import Bookshelf.List.Basic import Bookshelf.Real.Set.Interval namespace Real /-- A `Partition` is some finite subset of `[a, b]` containing points `a` and `b`. It is assumed that the points of the `Partition` are distinct and sorted. The use of a `List` ensures finite-ness. -/ structure Partition where xs : List ℝ has_min_length : xs.length ≥ 2 sorted : ∀ x ∈ xs.pairwise (fun x₁ x₂ => x₁ < x₂), x namespace Partition lemma length_partition_gt_zero (p : Partition) : p.xs.length > 0 := calc p.xs.length _ ≥ 2 := p.has_min_length _ > 0 := by simp /-- The left-most subdivision point of the `Partition`. -/ def left (p : Partition) : ℝ := p.xs.head (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p)) /-- The right-most subdivision point of the `Partition`. -/ def right (p : Partition) : ℝ := p.xs.getLast (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p)) /-- Define `∈` syntax for a `Partition`. We say a real is a member of a partition provided it lies somewhere in closed interval `[a, b]`. -/ instance : Membership ℝ Partition where mem (x : ℝ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right /-- Every subdivision point of a `Partition` is itself a member of the `Partition`. -/ theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs) : x ∈ p := by sorry end Partition end Real