\documentclass{article} \input{../../preamble} \newcommand{\lean}[1]{\leanref {./Chapter\_1\_11.html\#Apostol.Chapter\_1\_11.#1} {Apostol.Chapter\_1\_11.#1}} \begin{document} \header{Exercises 1.11}{Tom M. Apostol} \section*{Exercise 4}% \label{sec:exercise-4} Prove that the greatest-integer function has the properties indicated: \subsection*{\proceeding{Exercise 4a}}% \label{sub:exercise-4a} $\floor{x + n} = \floor{x} + n$ for every integer $n$. \begin{proof} \lean{exercise\_4a} \end{proof} \subsection*{\proceeding{Exercise 4b}}% \label{sub:exercise-4b} $\floor{-x} = \begin{cases} -\floor{x} & \text{if } x \text{ is an integer}, \\ -\floor{x} - 1 & \text{otherwise}. \end{cases}$ \begin{proof} \ % Force space prior to *Proof.* \begin{enumerate}[(a)] \item \lean{exercise\_4b\_1} \item \lean{exercise\_4b\_2} \end{enumerate} \end{proof} \subsection*{\proceeding{Exercise 4c}}% \label{sub:exercise-4c} $\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$. \begin{proof} \lean{exercise\_4c} \end{proof} \subsection*{\proceeding{Exercise 4d}}% \label{sub:exercise-4d} $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$ \begin{proof} \lean{exercise\_4d} \end{proof} \subsection*{\proceeding{Exercise 4e}}% \label{sub:exercise-4e} $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$ \begin{proof} \lean{exercise\_4e} \end{proof} \section*{\proceeding{Exercise 5}}% \label{sec:exercise-5} The formulas in Exercises 4(d) and 4(e) suggest a generalization for $\floor{nx}$. State and prove such a generalization. \note{The stated generalization is known as "Hermite's Identity."} \begin{proof} \lean{exercise\_5} \divider We prove that for all natural numbers $n$ and real numbers $x$, the following identity holds: \begin{equation} \label{sec:exercise-5-eq1} \floor{nx} = \sum_{i=0}^{n-1} \floor{x + \frac{i}{n}} \end{equation} By definition of the floor function, $x = \floor{x} + r$ for some $r \in \ico{0}{1}$. Define $S$ as the partition of non-overlapping subintervals $$\ico{0}{\frac{1}{n}}, \ico{\frac{1}{n}}{\frac{2}{n}}, \ldots, \ico{\frac{n-1}{n}}{1}.$$ By construction, $\cup\; S = \ico{0}{1}$. Therefore there exists some $j \in \mathbb{N}$ such that \begin{equation} \label{sec:exercise-5-eq2} r \in \ico{\frac{j}{n}}{\frac{j+1}{n}}. \end{equation} With these definitions established, we now show the left- and right-hand sides of \eqref{sec:exercise-5-eq1} evaluate to the same number. \paragraph{Left-Hand Side}% Consider the left-hande side of identity \eqref{sec:exercise-5-eq1} By \eqref{sec:exercise-5-eq2}, $nr \in \ico{j}{j + 1}$. Therefore $\floor{nr} = j$. Thus \begin{align} \floor{nx} & = \floor{n(\floor{x} + r)} \nonumber \\ & = \floor{n\floor{x} + nr} \nonumber \\ & = \floor{n\floor{x}} + \floor{nr}. \nonumber & \text{\nameref{sub:exercise-4a}} \\ & = \floor{n\floor{x}} + j \nonumber \\ & = n\floor{x} + j. \label{sec:exercise-5-eq3} \end{align} \paragraph{Right-Hand Side}% Now consider the right-hand side of identity \eqref{sec:exercise-5-eq1}. We note each summand, by construction, is the floor of $x$ added to a nonnegative number less than one. Therefore each summand contributes either $\floor{x}$ or $\floor{x} + 1$ to the total. Letting $z$ denote the number of summands that contribute $\floor{x} + 1$, we have \begin{equation} \label{sec:exercise-5-eq4} \sum_{i=0}^{n-1} \floor{x + \frac{i}{n}} = n\floor{x} + z. \end{equation} The value of $z$ corresponds to the number of indices $i$ that satisfy $$\frac{i}{n} \geq 1 - r.$$ By \eqref{sec:exercise-5-eq2}, it follows \begin{align*} 1 - r & \in \ioc{1 - \frac{j+1}{n}}{1-\frac{j}{n}} \\ & = \ioc{\frac{n - j - 1}{n}}{\frac{n - j}{n}}. \end{align*} Thus we can determine the value of $z$ by instead counting the number of indices $i$ that satisfy $$\frac{i}{n} \geq \frac{n - j}{n}.$$ Rearranging terms, we see that $i \geq n - j$ holds for $z = (n - 1) - (n - j) + 1 = j$ of the $n$ summands. Substituting the value of $z$ into \eqref{sec:exercise-5-eq4} yields \begin{equation} \label{sec:exercise-5-eq5} \sum_{i=0}^{n-1} \floor{x + \frac{i}{n}} = n\floor{x} + j. \end{equation} \paragraph{Conclusion}% Since \eqref{sec:exercise-5-eq3} and \eqref{sec:exercise-5-eq5} agree with one another, it follows identity \eqref{sec:exercise-5-eq1} holds. \end{proof} \section*{\unverified{Exercise 6}}% \label{sec:exercise-6} Recall that a lattice point $(x, y)$ in the plane is one whose coordinates are integers. Let $f$ be a nonnegative function whose domain is the interval $[a, b]$, where $a$ and $b$ are integers, $a < b$. Let $S$ denote the set of points $(x, y)$ satisfying $a \leq x \leq b$, $0 < y \leq f(x)$. Prove that the number of lattice points in $S$ is equal to the sum $$\sum_{n=a}^b \floor{f(n)}.$$ \begin{proof} Define $S_i = \mathbb{Z} \cap \ioc{0}{f(i)}$ for all $i \in \mathbb{Z}$. By definition, the set of lattice points of $S$ is given by $$L = \{ (i, j) : i = a, \ldots, b \land j \in S_i \}.$$ By construction, it follows $$\sum_{j \in S_i} 1 = \floor{f(i)}.$$ Therefore $$\abs{L} = \sum_{i=a}^b \sum_{j \in S_i} 1 = \sum_{i=1}^b \floor{f(i)}.$$ \end{proof} \section*{Exercise 7}% \label{sec:exercise-7} If $a$ and $b$ are positive integers with no common factor, we have the formula $$\sum_{n=1}^{b-1} \floor{\frac{na}{b}} = \frac{(a - 1)(b - 1)}{2}.$$ When $b = 1$, the sum on the left is understood to be $0$. \subsection*{\unverified{Exercise 7a}}% \label{sub:exercise-7a} Derive this result by a geometric argument, counting lattice points in a right triangle. \begin{proof} TODO \end{proof} \subsection*{\proceeding{Exercise 7b}}% \label{sub:exercise-7b} Derive the result analytically as follows: By changing the index of summation, note that $\sum_{n=1}^{b-1} \floor{na / b} = \sum_{n=1}^{b-1} \floor{a(b - n) / b}$. Now apply Exercises 4(a) and (b) to the bracket on the right. \begin{proof} \lean{exercise\_7b} \end{proof} \section*{\unverified{Exercise 8}}% \label{sec:exercise-8} Let $S$ be a set of points on the real line. The \textit{characteristic function} of $S$ is, by definition, the function $\chi_S$ such that $\chi_S(x) = 1$ for every $x$ in $S$, and $\chi_S(x) = 0$ for those $x$ not in $S$. Let $f$ be a step function which takes the constant value $c_k$ on the $k$th open subinterval $I_k$ of some partition of an interval $[a, b]$. Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have $$f(x) = \sum_{k=1}^n c_k\chi_{I_k}(x).$$ This property is described by saying that every step function is a linear combination of characteristic functions of intervals. \begin{proof} TODO \end{proof} \end{document}