\documentclass{article} \input{../../../preamble} \newcommand{\lean}[1]{\leanref {./Geometric.html\#Real.Geometric.#1} {Real.Geometric.#1}} \begin{document} \section{\unverified{Sum of Geometric Series}}% \label{sec:sum-geometric-series} Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. Then for some $n \in \mathbb{N}$, $$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$ \begin{proof} \lean{sum\_recursive\_closed} \end{proof} \end{document}