import Mathlib.Data.Real.Basic import Mathlib.Data.Set.Pointwise.Basic import Mathlib.Tactic.LibrarySearch #check Archimedean #check Real.exists_isLUB namespace Real /-- A property holds for the negation of elements in set `S` if and only if it also holds for the elements of the negation of `S`. -/ lemma set_neg_prop_iff_neg_set_prop (S : Set ℝ) (p : ℝ → Prop) : (∀ y, y ∈ S → p (-y)) ↔ (∀ y, y ∈ -S → p y) := by apply Iff.intro · intro h y hy rw [← neg_neg y, Set.neg_mem_neg] at hy have := h (-y) hy simp at this exact this · intro h y hy rw [← Set.neg_mem_neg] at hy exact h (-y) hy /-- The upper bounds of the negation of a set is the negation of the lower bounds of the set. -/ lemma upper_bounds_neg_eq_neg_lower_bounds (S : Set ℝ) : upperBounds (-S) = -lowerBounds S := by suffices (∀ x, x ∈ upperBounds (-S) ↔ x ∈ -(lowerBounds S)) from Set.ext this intro x apply Iff.intro · intro hx unfold lowerBounds show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → x ≤ a } show ∀ ⦃a : ℝ⦄, a ∈ S → (-x) ≤ a intro a ha; rw [neg_le]; revert ha a rw [set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)] exact hx · intro hx unfold upperBounds show ∀ ⦃a : ℝ⦄, a ∈ -S → a ≤ x rw [← set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)] intro y hy; rw [neg_le]; revert hy y exact hx /-- The negation of the upper bounds of a set is the lower bounds of the negation of the set. -/ lemma neg_upper_bounds_eq_lower_bounds_neg (S : Set ℝ) : -upperBounds S = lowerBounds (-S) := by suffices (∀ x, x ∈ -upperBounds S ↔ x ∈ lowerBounds (-S)) from Set.ext this intro x apply Iff.intro · intro hx unfold lowerBounds show ∀ ⦃a : ℝ⦄, a ∈ -S → x ≤ a rw [← set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)] intro y hy; rw [le_neg]; revert hy y exact hx · intro hx unfold upperBounds show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ x } show ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ (-x) intro a ha; rw [le_neg]; revert ha a rw [set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)] exact hx /-- An element `x` is the least element of the negation of a set if and only if `-x` if the greatest element of the set. -/ lemma is_least_neg_set_eq_is_greatest_set_neq (S : Set ℝ) : IsLeast (-S) x = IsGreatest S (-x) := by unfold IsLeast IsGreatest rw [← neg_upper_bounds_eq_lower_bounds_neg S] rfl /-- At least with respect to `ℝ`, `x` is the least upper bound of set `-S` if and only if `-x` is the greatest lower bound of `S`. -/ theorem is_lub_neg_set_iff_is_glb_set_neg (S : Set ℝ) : IsLUB (-S) x = IsGLB S (-x) := calc IsLUB (-S) x _ = IsLeast (upperBounds (-S)) x := rfl _ = IsLeast (-lowerBounds S) x := by rw [upper_bounds_neg_eq_neg_lower_bounds S] _ = IsGreatest (lowerBounds S) (-x) := by rw [is_least_neg_set_eq_is_greatest_set_neq] _ = IsGLB S (-x) := rfl /-- Theorem I.27 Every nonempty set `S` that is bounded below has a greatest lower bound; that is, there is a real number `L` such that `L = inf S`. -/ theorem exists_isGLB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddBelow S) : ∃ x, IsGLB S x := by -- First we show the negation of a nonempty set bounded below is a nonempty -- set bounded above. In that case, we can then apply the completeness axiom -- to argue the existence of a supremum. have hne' : (-S).Nonempty := Set.nonempty_neg.mpr hne have hbdd' : ∃ x, ∀ (y : ℝ), y ∈ -S → y ≤ x := by rw [bddBelow_def] at hbdd let ⟨lb, lbp⟩ := hbdd refine ⟨-lb, ?_⟩ rw [← set_neg_prop_iff_neg_set_prop S (fun y => y ≤ -lb)] intro y hy exact neg_le_neg (lbp y hy) rw [←bddAbove_def] at hbdd' -- Once we have found a supremum for `-S`, we argue the negation of this value -- is the same as the infimum of `S`. let ⟨ub, ubp⟩ := exists_isLUB (-S) hne' hbdd' exact ⟨-ub, (is_lub_neg_set_iff_is_glb_set_neg S).mp ubp⟩ /-- Every real should be less than or equal to the absolute value of its ceiling. -/ lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by by_cases h : x ≥ 0 · let k : ℤ := ⌈x⌉ unfold Int.natAbs have k' : k = ⌈x⌉ := rfl rw [←k'] have _ : k ≥ 0 := by -- Hint for match below rw [k', ge_iff_le] exact Int.ceil_nonneg (ge_iff_le.mp h) match k with | Int.ofNat m => calc x _ ≤ ⌈x⌉ := Int.le_ceil x _ = Int.ofNat m := by rw [←k'] · have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp calc x _ ≤ 0 := le_of_lt (lt_of_not_le h) _ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h' /-- Theorem I.29 For every real `x` there exists a positive integer `n` such that `n > x`. -/ theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩ have h : x < x' := calc x _ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x _ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp _ = x' := rfl exact ⟨x', h⟩ /-- Theorem I.30 If `x > 0` and if `y` is an arbitrary real number, there exists a positive integer `n` such that `nx > y`. This is known as the *Archimedean Property of the Reals*. -/ theorem exists_pnat_mul_self_geq_of_pos {x y : ℝ} : x > 0 → ∃ n : ℕ+, n * x > y := by intro hx let ⟨n, p⟩ := exists_pnat_geq_self (y / x) have p' := mul_lt_mul_of_pos_right p hx rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p' exact ⟨n, p'⟩ /-- Theorem I.31 If three real numbers `a`, `x`, and `y` satisfy the inequalities `a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`. -/ theorem forall_pnat_leq_self_leq_frac_imp_eq {x y a : ℝ} : (∀ n : ℕ+, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by intro h match @trichotomous ℝ LT.lt _ x a with | -- x = a Or.inr (Or.inl r) => exact r | -- x < a Or.inl r => have z : a < a := lt_of_le_of_lt (h 1).left r simp at z | -- x > a Or.inr (Or.inr r) => let ⟨c, hc⟩ := exists_pos_add_of_lt' r let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left have hn := mul_lt_mul_of_pos_left hn $ have hp : 0 < (↑↑n : ℝ) := by simp show 0 < ((↑↑n)⁻¹ : ℝ) from inv_pos.mpr hp rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ℝ), ←one_div, mul_one_div] at hn simp at hn have hn := add_lt_add_left hn a have := calc a + y / ↑↑n _ < a + c := hn _ = x := hc.right _ ≤ a + y / ↑↑n := (h n).right simp at this /-- Theorem I.32a Let `h` be a given positive number and let `S` be a set of real numbers. If `S` has a supremum, then for some `x` in `S` we have `x > sup S - h`. -/ theorem arb_close_to_sup (S : Set ℝ) (s h : ℝ) (hp : h > 0) : IsLUB S s → ∃ x : S, x > s - h := sorry /-- Theorem I.32b Let `h` be a given positive number and let `S` be a set of real numbers. If `S` has an infimum, then for some `x` in `S` we have `x < inf S + h`. -/ theorem arb_close_to_inf (S : Set ℝ) (s h : ℝ) (hp : h > 0) : IsGLB S s → ∃ x : S, x < s + h := sorry end Real