import Common.LTuple.Basic /-! # Enderton.Chapter_0 Useful Facts About Sets -/ namespace Enderton.Chapter_0 /-- The following describes a so-called "generic" tuple. Like an `LTuple`, a generic `n`-tuple is defined recursively like so: `⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩` Unlike `LTuple`, this tuple bends the syntax above further. For example, both tuples above are equivalent to: `⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩` for some `1 ≤ m ≤ n`. This distinction is purely syntactic, and introduced solely to prove `lemma_0a`. In other words, `LTuple` is an always-normalized variant of an `GTuple`. In general, prefer it over this when working within Enderton's book. -/ inductive GTuple : (α : Type u) → (size : Nat × Nat) → Type u where | nil : GTuple α (0, 0) | snoc : GTuple α (p, q) → LTuple α r → GTuple α (p + q, r) syntax (priority := high) "t[" term,* "]" : term macro_rules | `(t[]) => `(LTuple.nil) | `(t[$x]) => `(LTuple.snoc t[] $x) | `(t[$xs:term,*, $x]) => `(LTuple.snoc t[$xs,*] $x) syntax (priority := high) "g[" term,* "]" : term macro_rules | `(g[]) => `(GTuple.nil) | `(g[$x]) => `(GTuple.snoc g[] t[$x]) | `(g[g[$xs:term,*], $ys:term,*]) => `(GTuple.snoc g[$xs,*] t[$ys,*]) | `(g[$x, $xs:term,*]) => `(GTuple.snoc g[] t[$x, $xs,*]) namespace GTuple open scoped LTuple /-! ## Normalization -/ /-- Converts an `GTuple` into "normal form". -/ def norm : GTuple α (m, n) → LTuple α (m + n) | g[] => t[] | snoc is ts => LTuple.concat is.norm ts /-- Normalization of an empty `GTuple` yields an empty `Tuple`. -/ theorem norm_nil_eq_nil : @norm α 0 0 nil = LTuple.nil := rfl /-- Normalization of a pseudo-empty `GTuple` yields an empty `Tuple`. -/ theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc g[] t[]) = t[] := by unfold norm norm rfl /-- Normalization elimates `snoc` when the `snd` component is `nil`. -/ theorem norm_snoc_nil_elim {t : GTuple α (p, q)} : norm (snoc t t[]) = norm t := by cases t with | nil => simp; unfold norm norm; rfl | snoc tf tl => simp conv => lhs; unfold norm /-- Normalization eliminates `snoc` when the `fst` component is `nil`. -/ theorem norm_nil_snoc_elim {ts : LTuple α n} : norm (snoc g[] ts) = cast (by simp) ts := by unfold norm norm rw [LTuple.nil_concat_self_eq_self] /-- Normalization distributes across `Tuple.snoc` calls. -/ theorem norm_snoc_snoc_norm : norm (snoc as (LTuple.snoc bs b)) = LTuple.snoc (norm (snoc as bs)) b := by unfold norm rw [← LTuple.concat_snoc_snoc_concat] /-- Normalizing an `GTuple` is equivalent to concatenating the normalized `fst` component with the `snd`. -/ theorem norm_snoc_eq_concat {t₁ : GTuple α (p, q)} {t₂ : LTuple α n} : norm (snoc t₁ t₂) = LTuple.concat t₁.norm t₂ := by conv => lhs; unfold norm /-! ## Equality -/ /-- Implements Boolean equality for `GTuple α n` provided `α` has decidable equality. -/ instance BEq [DecidableEq α] : BEq (GTuple α n) where beq t₁ t₂ := t₁.norm == t₂.norm /-! ## Basic API -/ /-- Returns the number of entries in the `GTuple`. -/ def size (_ : GTuple α n) := n /-- Returns the number of entries in the "shallowest" portion of the `GTuple`. For example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`. -/ def length : GTuple α n → Nat | g[] => 0 | snoc g[] ts => ts.size | snoc _ ts => 1 + ts.size /-- Returns the first component of our `GTuple`. For example, the first component of tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`. -/ def fst : GTuple α (m, n) → LTuple α m | g[] => t[] | snoc ts _ => ts.norm /-- Given `GTuple α (m, n)`, the `fst` component is equal to an initial segment of size `k` of the tuple in normal form. -/ theorem self_fst_eq_norm_take (t : GTuple α (m, n)) : t.fst = t.norm.take m := match t with | g[] => by unfold fst rw [LTuple.self_take_zero_eq_nil] simp | snoc tf tl => by unfold fst conv => rhs; unfold norm rw [LTuple.eq_take_concat] simp /-- If the normal form of an `GTuple` is equal to a `Tuple`, the `fst` component must be a prefix of the `Tuple`. -/ theorem norm_eq_fst_eq_take {t₁ : GTuple α (m, n)} {t₂ : LTuple α (m + n)} : (t₁.norm = t₂) → (t₁.fst = t₂.take m) := by intro h rw [self_fst_eq_norm_take, h] /-- Returns the first component of our `GTuple`. For example, the first component of tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`. -/ def snd : GTuple α (m, n) → LTuple α n | g[] => t[] | snoc _ ts => ts end GTuple /-! ## Lemma 0A -/ section variable {k m n : Nat} variable (p : 1 ≤ m) variable (q : n + (m - 1) = m + k) private lemma n_eq_succ_k : n = k + 1 := by let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by intro h have ff : 1 ≤ 0 := h ▸ p ring_nf at ff exact ff.elim calc n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel] _ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h] _ = m' + 1 + k - m' := by simp _ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm] _ = 1 + k := by simp _ = k + 1 := by rw [Nat.add_comm] private lemma n_pred_eq_k : n - 1 = k := by have h : k + 1 - 1 = k + 1 - 1 := rfl conv at h => lhs; rw [←n_eq_succ_k p q] simp at h exact h private lemma n_geq_one : 1 ≤ n := by rw [n_eq_succ_k p q] simp private lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 := Nat.recOn k (by simp; exact p) (fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1) _ = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc] _ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1) _ = k' + 1 + 1 := by rw [ih]) private lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by rw [min_comm_succ_eq p] exact n_eq_succ_k p q private lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)] conv => lhs; rw [n_pred_eq_k p q] private def cast_norm : GTuple α (n, m - 1) → LTuple α (m + k) | xs => cast (by rw [q]) xs.norm private def cast_fst : GTuple α (n, m - 1) → LTuple α (k + 1) | xs => cast (by rw [n_eq_succ_k p q]) xs.fst private def cast_take (ys : LTuple α (m + k)) := cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1)) /-- #### Lemma 0A Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then `x₁ = ⟨y₁, ..., yₖ₊₁⟩`. -/ theorem lemma_0a (xs : GTuple α (n, m - 1)) (ys : LTuple α (m + k)) : (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by intro h suffices HEq (cast (_ : LTuple α n = LTuple α (k + 1)) xs.fst) (cast (_ : LTuple α (min (m + k) (k + 1)) = LTuple α (k + 1)) (LTuple.take ys (k + 1))) from eq_of_heq this congr · exact n_eq_min_comm_succ p q · rfl · exact n_eq_min_comm_succ p q · exact HEq.rfl · exact Eq.recOn (motive := fun _ h => HEq (_ : n + (n - 1) = n + k) (cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q]))) (show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by rw [n_eq_min_comm_succ p q]) HEq.rfl · exact n_geq_one p q · exact n_pred_eq_k p q · exact Eq.symm (n_eq_min_comm_succ p q) · exact n_pred_eq_k p q · rw [GTuple.self_fst_eq_norm_take] unfold cast_norm at h simp at h rw [←h, ←n_eq_succ_k p q] have h₂ := Eq.recOn (motive := fun x h => HEq (LTuple.take xs.norm n) (LTuple.take (cast (show LTuple α (n + (m - 1)) = LTuple α x by rw [h]) xs.norm) n)) (show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q]) HEq.rfl exact Eq.recOn (motive := fun x h => HEq (cast h (LTuple.take xs.norm n)) (LTuple.take (cast (_ : LTuple α (n + (m - 1)) = LTuple α (m + k)) xs.norm) n)) (show LTuple α (min (n + (m - 1)) n) = LTuple α n by simp) h₂ end end Enderton.Chapter_0