\documentclass{article} \usepackage{amsfonts, amsthm} \usepackage{hyperref} \newtheorem{theorem}{Theorem} \newtheorem{custominner}{Theorem} \newenvironment{custom}[1]{% \renewcommand\thecustominner{#1}% \custominner }{\endcustominner} \begin{document} \begin{custom}{1.29} For every real $x$ there exists a positive integer $n$ such that $n > x$. \end{custom} \begin{proof} \href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.exists\_pnat\_geq\_self} \end{proof} \begin{custom}{1.30}[Archimedean Property of the Reals] If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$. \end{custom} \begin{proof} \href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.pos\_imp\_exists\_pnat\_mul\_self\_geq} \end{proof} \end{document}