\documentclass{report} \input{../../preamble} \makeleancommands{../..} \begin{document} \header{Elements of Set Theory}{Herbert B. Enderton} \tableofcontents \begingroup \renewcommand\thechapter{R} \setcounter{chapter}{0} \addtocounter{chapter}{-1} \chapter{Reference}% \label{chap:reference} \section{\partial{Empty Set Axiom}}% \label{ref:empty-set-axiom} There is a set having no members: $$\exists\; B, \forall\; x, x \not\in B.$$ \section{\defined{Extensionality Axiom}}% \label{ref:extensionality-axiom} If two sets have exactly the same members, then they are equal: $$\forall\; A, \forall\; B, \left[\forall\; x, (x \in A \iff x \in B) \Rightarrow A = B\right].$$ \begin{axiom} \lean{Mathlib/Init/Set}{Set.ext} \end{axiom} \section{\partial{Pairing Axiom}}% \label{ref:pairing-axiom} For any sets $u$ and $v$, there is a set having as members just $u$ and $v$: $$\forall\; u, \forall\; v, \exists\; B, \forall\; x, (x \in B \iff x = u \text{ or } x = v).$$ \section{\defined{Powerset}}% \label{ref:powerset} The \textbf{powerset} of some set $A$ is the set of all subsets of $A$. \begin{definition} \lean{Mathlib/Init/Set}{Set.powerset} \end{definition} \section{\partial{Power Set Axiom}}% \label{ref:power-set-axiom} For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall\; a, \exists\; B, \forall\; x, (x \in B \iff x \subseteq a).$$ \section{\partial{Union Axiom, Preliminary Form}}% \label{ref:union-axiom-preliminary-form} For any sets $a$ and $b$, there is a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall\; a, \forall\; b, \exists\; B, \forall\; x, (x \in B \iff x \in a \text{ or } x \in b).$$ \endgroup \chapter{Introduction}% \label{chap:introduction} \section{Baby Set Theory}% \label{sec:baby-set-theory} \subsection{\verified{Exercise 1.1}}% \label{sub:exercise-1.1} Which of the following become true when "$\in$" is inserted in place of the blank? Which become true when "$\subseteq$" is inserted? \subsubsection{\verified{Exercise 1.1a}}% \label{ssub:exercise-1.1a} $\{\emptyset\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1a} Because the \textit{object} $\{\emptyset\}$ is a member of the right-hand set, the statement is \textbf{true} in the case of "$\in$". Because the \textit{members} of $\{\emptyset\}$ are all members of the right-hand set, the statement is also \textbf{true} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1b}}% \label{ssub:exercise-1.11b} $\{\emptyset\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1b} Because the \textit{object} $\{\emptyset\}$ is not a member of the right-hand set, the statement is \textbf{false} in the case of "$\in$". Because the \textit{members} of $\{\emptyset\}$ are all members of the right-hand set, the statement is \textbf{true} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1c}}% \label{ssub:exercise-1.1c} $\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1c} Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is \textbf{false} in the case of "$\in$". Because the \textit{members} of $\{\{\emptyset\}\}$ are all members of the right-hand set, the statement is \textbf{true} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1d}}% \label{ssub:exercise-1.1d} $\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1d} Because the \textit{object} $\{\{\emptyset\}\}$ is a member of the right-hand set, the statement is \textbf{true} in the case of "$\in$". Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is \textbf{false} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1e}}% \label{ssub:exercise-1.1e} $\{\{\emptyset\}\} \_\_ \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1e} Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is \textbf{false} in the case of "$\in$". Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is \textbf{false} in the case of "$\subseteq$". \end{proof} \subsection{\verified{Exercise 1.2}}% \label{sub:exercise-1.2} Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to each other. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_2} By the \nameref{ref:extensionality-axiom}, $\emptyset$ is only equal to $\emptyset$. This immediately shows it is not equal to the other two. Now consider object $\emptyset$. This object is a member of $\{\emptyset\}$ but is not a member of $\{\{\emptyset\}\}$. Again, by the \nameref{ref:extensionality-axiom}, these two sets must be different. \end{proof} \subsection{\verified{Exercise 1.3}}% \label{sub:exercise-1.3} Show that if $B \subseteq C$, then $\powerset{B} \subseteq \powerset{C}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_3} Let $x \in \powerset{B}$. By definition of the \nameref{ref:powerset}, $x$ is a subset of $B$. By hypothesis, $B \subseteq C$. Then $x \subseteq C$. Again by definition of the \nameref{ref:powerset}, it follows $x \in \powerset{C}$. \end{proof} \subsection{\verified{Exercise 1.4}}% \label{sub:exercise-1.4} Assume that $x$ and $y$ are members of a set $B$. Show that $\{\{x\}, \{x, y\}\} \in \powerset{\powerset{B}}.$ \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_4} Let $x$ and $y$ be members of set $B$. Then $\{x\}$ and $\{x, y\}$ are subsets of $B$. By definition of the \nameref{ref:powerset}, $\{x\}$ and $\{x, y\}$ are members of $\powerset{B}$. Then $\{\{x\}, \{x, y\}\}$ is a subset of $\powerset{B}$. By definition of the \nameref{ref:powerset}, $\{\{x\}, \{x, y\}\}$ is a member of $\powerset{\powerset{B}}$. \end{proof} \section{Sets - An Informal View}% \label{sec:sets-informal-view} \subsection{\partial{Exercise 2.1}}% \label{sub:exercise-2.1} Define the rank of a set $c$ to be the least $\alpha$ such that $c \subseteq V_\alpha$. Compute the rank of $\{\{\emptyset\}\}$. Compute the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$. \begin{proof} We first compute the values of $V_n$ for $0 \leq n \leq 3$ under the assumption the set of atoms $A$ at the bottom of the hierarchy is empty. \begin{align*} V_0 & = \emptyset \\ V_1 & = V_0 \cup \powerset{V_0} \\ & = \emptyset \cup \{\emptyset\} \\ & = \{\emptyset\} \\ V_2 & = V_1 \cup \powerset{V_1} \\ & = \{\emptyset\} \cup \powerset{\{\emptyset\}} \\ & = \{\emptyset\} \cup \{\emptyset, \{\emptyset\}\} \\ & = \{\emptyset, \{\emptyset\}\} \\ V_3 & = V_2 \cup \powerset{V_2} \\ & = \{\emptyset, \{\emptyset\}\} \cup \powerset{\{\emptyset, \{\emptyset\}\}} \\ & = \{\emptyset, \{\emptyset\}\} \cup \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ & = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \end{align*} It then immediately follows $\{\{\emptyset\}\}$ has rank $2$ and $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ has rank $3$. \end{proof} \subsection{\partial{Exercise 2.2}}% \label{sub:exercise-2.2} We have stated that $V_{\alpha + 1} = A \cup \powerset{V_\alpha}$. Prove this at least for $\alpha < 3$. \begin{proof} Let $A$ be the set of atoms in our set hierarchy. Let $P(n)$ be the predicate, "$V_{n + 1} = A \cup \powerset{V_n}$." We prove $P(n)$ holds true for all natural numbers $n \geq 1$ via induction. \paragraph{Base Case}% Let $n = 1$. By definition, $V_1 = V_0 \cup \powerset{V_0}$. By definition, $V_0 = A$. Therefore $V_1 = A \cup \powerset{V_0}$. This proves $P(1)$ holds true. \paragraph{Induction Step}% Suppose $P(n)$ holds true for some $n \geq 1$. Consider $V_{n+1}$. By definition, $V_{n+1} = V_n \cup \powerset{V_n}$. Therefore, by the induction hypothesis, \begin{align} V_{n+1} & = V_n \cup \powerset{V_n} \nonumber \\ & = (A \cup \powerset{V_{n-1}}) \cup \powerset{V_n} \nonumber \\ & = A \cup (\powerset{V_{n-1}} \cup \powerset{V_n}) \label{sub:exercise-2.2-eq1} \end{align} But $V_{n-1}$ is a subset of $V_n$. \nameref{sub:exercise-1.3} then implies $\powerset{V_{n-1}} \subseteq \powerset{V_n}$. This means \eqref{sub:exercise-2.2-eq1} can be simplified to $$V_{n+1} = A \cup \powerset{V_n},$$ proving $P(n+1)$ holds true. \paragraph{Conclusion}% By mathematical induction, it follows for all $n \geq 1$, $P(n)$ is true. \end{proof} \subsection{\partial{Exercise 2.3}}% \label{sub:exercise-2.3} List all the members of $V_3$. List all the members of $V_4$. (It is to be assumed here that there are no atoms.) \begin{proof} As seen in the proof of \nameref{sub:exercise-2.1}, $$V_3 = \{ \emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\} \}.$$ By \nameref{sub:exercise-2.2}, $V_4 = \powerset{V_3}$ (since it is assumed there are no atoms). Thus \begin{align*} & V_4 = \{ \\ & \qquad \emptyset, \\ & \qquad \{\emptyset\}, \\ & \qquad \{\{\emptyset\}\}, \\ & \qquad \{\{\{\emptyset\}\}\}, \\ & \qquad \{\{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}\}, \\ & \qquad \{\emptyset, \{\{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\{\emptyset\}, \{\{\emptyset\}\}\}, \\ & \qquad \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ & \qquad \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ & \}. \end{align*} \end{proof} \end{document}