/- Chapter 8 Induction and Recursion -/ -- ======================================== -- Exercise 1 -- -- Open a namespace `Hidden` to avoid naming conflicts, and use the equation -- compiler to define addition, multiplication, and exponentiation on the -- natural numbers. Then use the equation compiler to derive some of their basic -- properties. -- ======================================== namespace ex1 def add : Nat → Nat → Nat | m, Nat.zero => m | m, Nat.succ n => Nat.succ (add m n) def mul : Nat → Nat → Nat | _, Nat.zero => 0 | m, Nat.succ n => add m (mul m n) def exp : Nat → Nat → Nat | _, Nat.zero => 1 | m, Nat.succ n => mul m (exp m n) end ex1 -- ======================================== -- Exercise 2 -- -- Similarly, use the equation compiler to define some basic operations on lists -- (like the reverse function) and prove theorems about lists by induction (such -- as the fact that `reverse (reverse xs) = xs` for any list `xs`). -- ======================================== namespace ex2 variable {α : Type _} def reverse : List α → List α | [] => [] | (head :: tail) => reverse tail ++ [head] -- Proof of `reverse (reverse xs) = xs` shown in previous exercise. end ex2 -- ======================================== -- Exercise 3 -- -- Define your own function to carry out course-of-value recursion on the -- natural numbers. Similarly, see if you can figure out how to define -- `WellFounded.fix` on your own. -- ======================================== namespace ex3 def below {motive : Nat → Type} : Nat → Type | Nat.zero => PUnit | Nat.succ n => PProd (PProd (motive n) (@below motive n)) (PUnit : Type) -- TODO: Sort out how to write `brecOn` and `WellFounded.fix`. end ex3 -- ======================================== -- Exercise 4 -- -- Following the examples in Section Dependent Pattern Matching, define a -- function that will append two vectors. This is tricky; you will have to -- define an auxiliary function. -- ======================================== namespace ex4 inductive Vector (α : Type u) : Nat → Type u | nil : Vector α 0 | cons : α → {n : Nat} → Vector α n → Vector α (n + 1) namespace Vector -- TODO: Sort out how to write `append`. end Vector end ex4 -- ======================================== -- Exercise 5 -- -- Consider the following type of arithmetic expressions. The idea is that -- `var n` is a variable, `vₙ`, and `const n` is the constant whose value is -- `n`. -- ======================================== namespace ex5 inductive Expr where | const : Nat → Expr | var : Nat → Expr | plus : Expr → Expr → Expr | times : Expr → Expr → Expr deriving Repr open Expr def sampleExpr : Expr := plus (times (var 0) (const 7)) (times (const 2) (var 1)) -- Here `sampleExpr` represents `(v₀ * 7) + (2 * v₁)`. Write a function that -- evaluates such an expression, evaluating each `var n` to `v n`. def eval (v : Nat → Nat) : Expr → Nat | const n => sorry | var n => v n | plus e₁ e₂ => sorry | times e₁ e₂ => sorry def sampleVal : Nat → Nat | 0 => 5 | 1 => 6 | _ => 0 -- Try it out. You should get 47 here. -- #eval eval sampleVal sampleExpr -- ---------------------------------------- -- Implement "constant fusion," a procedure that simplifies subterms like -- `5 + 7` to `12`. Using the auxiliary function `simpConst`, define a function -- "fuse": to simplify a plus or a times, first simplify the arguments -- recursively, and then apply `simpConst` to try to simplify the result. -- ---------------------------------------- def simpConst : Expr → Expr | plus (const n₁) (const n₂) => const (n₁ + n₂) | times (const n₁) (const n₂) => const (n₁ * n₂) | e => e def fuse : Expr → Expr := sorry theorem simpConst_eq (v : Nat → Nat) : ∀ e : Expr, eval v (simpConst e) = eval v e := sorry theorem fuse_eq (v : Nat → Nat) : ∀ e : Expr, eval v (fuse e) = eval v e := sorry -- The last two theorems show that the definitions preserve the value. end ex5