\documentclass{article} \input{../../common/preamble} \begin{document} \begin{xtheorem}{I.27} Every nonempty set $S$ that is bounded below has a greatest lower bound; that is, there is a real number $L$ such that $L = \inf{S}$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB} \end{proof} \begin{xtheorem}{I.29} For every real $x$ there exists a positive integer $n$ such that $n > x$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self} \end{proof} \begin{xtheorem}{I.30}[Archimedean Property of the Reals] If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos} \end{proof} \begin{xtheorem}{I.31} If three real numbers $a$, $x$, and $y$ satisfy the inequalities $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then $x = a$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq} \end{proof} \end{document}