/- Exercises 1.7 -/ import OneVariableCalculus.Real.Geometry.Area import OneVariableCalculus.Real.Geometry.Rectangle open Real open Real.Geometry.Area -- ======================================== -- The properties of area in this set of exercises are to be deduced from the -- axioms for area stated in the foregoing section. -- ======================================== -- ---------------------------------------- -- Exercise 1 -- -- Prove that each of the following sets is measurable and has zero area: -- (a) A set consisting of a single point. -- (b) A set consisting of a finite number of points in a plane. -- (c) The union of a finite collection of line segments in a plane. -- ---------------------------------------- example (p : Point) : p.set_def ∈ 𝓜 ∧ ((h : p.set_def ∈ 𝓜) → area h = 0) := sorry example (S : Set Point) (hf : Set.Finite S) : (⋃ p ∈ S, p.set_def) ∈ 𝓜 ∧ ((h : (⋃ p ∈ S, p.set_def) ∈ 𝓜) → area h = 0) := sorry example (S : Set LineSegment) (hf : Set.Finite S) : (⋃ s ∈ S, s.set_def) ∈ 𝓜 ∧ ((h : (⋃ s ∈ S, s.set_def) ∈ 𝓜) → area h = 0) := sorry -- ---------------------------------------- -- Exercise 2 -- -- Every right triangular region is measurable because it can be obtained as the -- intersection of two rectangles. Prove that every triangular region is -- measurable and that its area is one half the product of its base and -- altitude. -- ---------------------------------------- -- # TODO -- ---------------------------------------- -- Exercise 3 -- -- Prove that every trapezoid and every parallelogram is measurable and derive -- the usual formulas for their areas. -- ---------------------------------------- -- # TODO -- ---------------------------------------- -- Exercise 4 -- -- A point `(x, y)` in the plane is called a *lattice point* if both coordinates -- `x` and `y` are integers. Let `P` be a polygon whose vertices are lattice -- points inside the polygon and `B` denotes the number on the boundary. -- -- (a) Prove that the formula is valid for rectangles with sides parallel to the -- coordinate axes. -- (b) Prove that the formula is valid for right triangles and parallelograms. -- (c) Use induction on the number of edges to construct a proof for general -- polygons. -- ---------------------------------------- -- # TODO -- ---------------------------------------- -- Exercise 5 -- -- Prove that a triangle whose vertices are lattice points cannot be -- equilateral. -- -- [Hint: Assume there is such a triangle and compute its area in two ways, -- using exercises 2 and 4.] -- ---------------------------------------- -- # TODO -- ---------------------------------------- -- Exercise 6 -- -- Let `A = {1, 2, 3, 4, 5}`, and let `𝓜` denote the class of all subsets of -- `A`. (There are `32` altogether, counting `A` itself and the empty set `∅`.) -- For each set `S` in `𝓜`, let `n(S)` denote the number of distinct elements in -- `S`. If `S = {1, 2, 3, 4}` and `T = {3, 4, 5}`, compute `n(S ∪ T)`, -- `n(S ∩ T)`, `n(S - T)`, and `n(T - S)`. Prove that the set function `n` -- satisfies the first three axioms for area. -- ---------------------------------------- -- # TODO