\documentclass{article} \input{../../../preamble} \newcommand{\lean}[2]{\href{./Area.html\##1}{#2}} \begin{document} \header{Axiomatic Framework of Area}{Tom M. Apostol} We assume there exists a class $\mathscr{M}$ of measurable sets in the plane and a set function $a$, whose domain is $\mathscr{M}$, with the following properties: \section*{\verified{Nonnegative Property}}% \hyperlabel{sec:nonnegative-property}% For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$. \begin{axiom} \lean{Nonnegative-Property}{Nonnegative Property} \end{axiom} \section*{\verified{Additive Property}}% \hyperlabel{sec:additive-property}% If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in $\mathscr{M}$, and we have $a(S \cup T) = a(S) + a(T) - a(S \cap T)$. \begin{axiom} \lean{Additive-Property}{Additive Property} \end{axiom} \section*{\verified{Difference Property}}% \hyperlabel{sec:difference-property}% If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in $\mathscr{M}$, and we have $a(T - S) = a(T) - a(S)$. \begin{axiom} \lean{Difference-Property}{Difference Property} \end{axiom} \section*{\verified{Invariance Under Congruence}}% \hyperlabel{sec:invariance-under-congruence}% If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is also in $\mathscr{M}$ and we have $a(S) = a(T)$. \begin{axiom} \lean{Invariant-Under-Congruence}{Invariance Under Congruence} \end{axiom} \section*{\verified{Choice of Scale}}% \label{sec:choice-scale} Every rectangle $R$ is in $\mathscr{M}$. If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$. \begin{axiom} \lean{Choice-of-Scale}{Choice of Scale} \end{axiom} \section*{\proceeding{Exhaustion Property}}% \hyperlabel{sec:exhaustion-property}% Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so that \begin{equation} \label{sec:exhaustion-property-eq1} S \subseteq Q \subseteq T. \end{equation} If there is one and only one number $c$ which satisfies the inequalities $$a(S) \leq c \leq a(T)$$ for all step regions $S$ and $T$ satisfying (1.1), then $Q$ is measurable and $a(Q) = c$. \begin{axiom} \lean{Exhaustion-Property}{Exhaustion Property} \end{axiom} \end{document}