import Bookshelf.Enderton.Set.OrderedPair /-! # Enderton.Set.Relation A representation of a relation, i.e. a set of ordered pairs. Like `Set`, it is assumed a relation is homogeneous. -/ namespace Set /-- A relation type as defined by Enderton. We choose to use tuples to represent our ordered pairs, as opposed to Kuratowski's definition of a set. Not to be confused with the Lean-provided `Rel`. -/ abbrev HRelation (α β : Type ) := Set (α × β) /-- A homogeneous variant of the `HRelation` type. -/ abbrev Relation (α : Type _) := HRelation α α namespace Relation /-! ## Domain and Range -/ /-- The domain of a `Relation`. -/ def dom (R : HRelation α β) : Set α := Prod.fst '' R /-- The first component of any pair in a `Relation` must be a member of the `Relation`'s domain. -/ theorem mem_pair_imp_fst_mem_dom {R : HRelation α β} (h : (x, y) ∈ R) : x ∈ dom R := by unfold dom Prod.fst simp only [mem_image, Prod.exists, exists_and_right, exists_eq_right] exact ⟨y, h⟩ /-- If `x ∈ dom R`, there exists some `y` such that `⟨x, y⟩ ∈ R`. -/ theorem dom_exists {R : HRelation α β} (hx : x ∈ dom R) : ∃ y : β, (x, y) ∈ R := by unfold dom at hx simp only [mem_image, Prod.exists, exists_and_right, exists_eq_right] at hx exact hx /-- The range of a `Relation`. -/ def ran (R : HRelation α β) : Set β := Prod.snd '' R theorem mem_pair_imp_snd_mem_ran {R : HRelation α β} (h : (x, y) ∈ R) : y ∈ ran R := by unfold ran Prod.snd simp only [mem_image, Prod.exists, exists_eq_right] exact ⟨x, h⟩ /-- If `x ∈ ran R`, there exists some `t` such that `⟨t, x⟩ ∈ R`. -/ theorem ran_exists {R : HRelation α β} (hx : x ∈ ran R) : ∃ t : α, (t, x) ∈ R := by unfold ran at hx simp only [mem_image, Prod.exists, exists_eq_right] at hx exact hx /-- The field of a `Relation`. -/ def fld (R : Relation α) : Set α := dom R ∪ ran R /-- The inverse of a `Relation`. -/ def inv (R : HRelation α β) : HRelation β α := { (p.2, p.1) | p ∈ R } /-- `(x, y)` is a member of relation `R` **iff** `(y, x)` is a member of `R⁻¹`. -/ @[simp] theorem mem_self_comm_mem_inv {R : HRelation α β} : (y, x) ∈ inv R ↔ (x, y) ∈ R := by unfold inv simp only [Prod.exists, mem_setOf_eq, Prod.mk.injEq] apply Iff.intro · intro ⟨x', y', hxy⟩ rw [← hxy.right.left, ← hxy.right.right] exact hxy.left · intro hxy exact ⟨x, y, hxy, rfl, rfl⟩ /-- The inverse of the inverse of a `Relation` is the `Relation`. -/ @[simp] theorem inv_inv_eq_self (R : HRelation α β) : inv (inv R) = R := by unfold inv simp only [Prod.exists, Set.mem_setOf_eq, Prod.mk.injEq] ext x apply Iff.intro · intro hx have ⟨a₁, b₁, ⟨⟨a₂, b₂, h₁⟩, h₂⟩⟩ := hx rw [← h₂, ← h₁.right.right, ← h₁.right.left] exact h₁.left · intro hx have (p, q) := x refine ⟨q, p, ⟨?_, ?_⟩⟩ · exact ⟨p, q, hx, rfl, rfl⟩ · rfl /-- For a set `F`, `dom F⁻¹ = ran F`. -/ @[simp] theorem dom_inv_eq_ran_self {F : HRelation α β} : dom (inv F) = ran F := by ext x unfold dom ran inv simp only [ Prod.exists, Set.mem_image, Set.mem_setOf_eq, Prod.mk.injEq, exists_and_right, exists_eq_right ] apply Iff.intro · intro ⟨y, a, _, h⟩ rw [← h.right.left] exact ⟨a, h.left⟩ · intro ⟨y, hy⟩ exact ⟨y, y, x, hy, rfl, rfl⟩ /-- For a set `F`, `ran F⁻¹ = dom F`. -/ @[simp] theorem ran_inv_eq_dom_self {F : HRelation α β} : ran (inv F) = dom F := by ext x unfold dom ran inv simp only [ Prod.exists, Set.mem_image, Set.mem_setOf_eq, Prod.mk.injEq, exists_eq_right, exists_and_right ] apply Iff.intro · intro ⟨a, y, b, h⟩ rw [← h.right.right] exact ⟨b, h.left⟩ · intro ⟨y, hy⟩ exact ⟨y, x, y, hy, rfl, rfl⟩ /-! ## Restriction -/ /-- The restriction of a `Relation` to a `Set`. -/ def restriction (R : HRelation α β) (A : Set α) : HRelation α β := { p ∈ R | p.1 ∈ A } /-! ## Image -/ /-- The image of a `Relation` under a `Set`. -/ def image (R : HRelation α β) (A : Set α) : Set β := { y | ∃ u ∈ A, (u, y) ∈ R } /-! ## Single-Rooted and Single-Valued -/ /-- A `Relation` `R` is said to be single-rooted **iff** for all `y ∈ ran R`, there exists exactly one `x` such that `⟨x, y⟩ ∈ R`. -/ def isSingleRooted (R : HRelation α β) : Prop := ∀ y ∈ ran R, ∃! x, x ∈ dom R ∧ (x, y) ∈ R /-- A single-rooted `Relation` should map the same output to the same input. -/ theorem single_rooted_eq_unique {R : HRelation α β} {x₁ x₂ : α} {y : β} (hR : isSingleRooted R) : (x₁, y) ∈ R → (x₂, y) ∈ R → x₁ = x₂ := by intro hx₁ hx₂ unfold isSingleRooted at hR have := hR y (mem_pair_imp_snd_mem_ran hx₁) have ⟨y₁, hy₁⟩ := this simp only [and_imp] at hy₁ have h₁ := hy₁.right x₁ (mem_pair_imp_fst_mem_dom hx₁) hx₁ have h₂ := hy₁.right x₂ (mem_pair_imp_fst_mem_dom hx₂) hx₂ rw [h₁, h₂] /-- A `Relation` `R` is said to be single-valued **iff** for all `x ∈ dom R`, there exists exactly one `y` such that `⟨x, y⟩ ∈ R`. Notice, a `Relation` that is single-valued is a function. -/ def isSingleValued (R : HRelation α β) : Prop := ∀ x ∈ dom R, ∃! y, y ∈ ran R ∧ (x, y) ∈ R /-- A single-valued `Relation` should map the same input to the same output. -/ theorem single_valued_eq_unique {R : HRelation α β} {x : α} {y₁ y₂ : β} (hR : isSingleValued R) : (x, y₁) ∈ R → (x, y₂) ∈ R → y₁ = y₂ := by intro hy₁ hy₂ unfold isSingleValued at hR have := hR x (mem_pair_imp_fst_mem_dom hy₁) have ⟨x₁, hx₁⟩ := this simp only [and_imp] at hx₁ have h₁ := hx₁.right y₁ (mem_pair_imp_snd_mem_ran hy₁) hy₁ have h₂ := hx₁.right y₂ (mem_pair_imp_snd_mem_ran hy₂) hy₂ rw [h₁, h₂] /-- For a set `F`, `F⁻¹` is a function **iff** `F` is single-rooted. -/ theorem single_valued_inv_iff_single_rooted_self {F : HRelation α β} : isSingleValued (inv F) ↔ isSingleRooted F := by apply Iff.intro · intro hF unfold isSingleValued at hF simp only [ dom_inv_eq_ran_self, ran_inv_eq_dom_self, mem_self_comm_mem_inv ] at hF suffices ∀ x ∈ ran F, ∃! y, (y, x) ∈ F from hF intro x hx have ⟨y, hy⟩ := hF x hx simp only [ ran_inv_eq_dom_self, mem_self_comm_mem_inv, and_imp ] at hy refine ⟨y, hy.left.right, ?_⟩ intro y₁ hy₁ exact hy.right y₁ (mem_pair_imp_fst_mem_dom hy₁) hy₁ · intro hF unfold isSingleRooted at hF unfold isSingleValued simp only [ dom_inv_eq_ran_self, ran_inv_eq_dom_self, mem_self_comm_mem_inv ] exact hF /-- For a relation `F`, `F` is a function **iff** `F⁻¹` is single-rooted. -/ theorem single_valued_self_iff_single_rooted_inv {F : HRelation α β} : isSingleValued F ↔ isSingleRooted (inv F) := by conv => lhs; rw [← inv_inv_eq_self F] rw [single_valued_inv_iff_single_rooted_self] /-- The subset of a function must also be a function. -/ theorem single_valued_subset {F G : HRelation α β} (hG : isSingleValued G) (h : F ⊆ G) : isSingleValued F := by unfold isSingleValued intro x hx have ⟨y, hy⟩ := dom_exists hx unfold ExistsUnique simp only refine ⟨y, ⟨mem_pair_imp_snd_mem_ran hy, hy⟩, ?_⟩ intro y₁ hy₁ exact single_valued_eq_unique hG (h hy₁.right) (h hy) /-! ## Injections -/ /-- A `Relation` `R` is one-to-one if it is a single-rooted function. -/ def isOneToOne (R : HRelation α β) : Prop := isSingleValued R ∧ isSingleRooted R /-- A `Relation` is one-to-one **iff** it's inverse is. -/ theorem one_to_one_self_iff_one_to_one_inv {R : HRelation α β} : isOneToOne R ↔ isOneToOne (inv R) := by unfold isOneToOne isSingleValued isSingleRooted conv => rhs; simp only [ dom_inv_eq_ran_self, ran_inv_eq_dom_self, mem_self_comm_mem_inv, eq_iff_iff ] apply Iff.intro <;> · intro ⟨hx, hy⟩ exact ⟨hy, hx⟩ /-! ## Surjections -/ /-- Indicates `Relation` `F` is a function from `A` to `B`. This is usually denoted as `F : A → B`. -/ def mapsInto (F : HRelation α β) (A : Set α) (B : Set β) := isSingleValued F ∧ dom F = A ∧ ran F ⊆ B /-- Indicates `Relation` `F` is a function from `A` to `ran F = B`. -/ def mapsOnto (F : HRelation α β) (A : Set α) (B : Set β) := isSingleValued F ∧ dom F = A ∧ ran F = B /-! ## Composition -/ /-- The composition of two `Relation`s. -/ def comp (F : HRelation β γ) (G : HRelation α β) : HRelation α γ := { p | ∃ t : β, (p.1, t) ∈ G ∧ (t, p.2) ∈ F} /-- If `x ∈ dom (F ∘ G)`, then `x ∈ dom G`. -/ theorem dom_comp_imp_dom_self {F : HRelation β γ} {G : HRelation α β} : x ∈ dom (comp F G) → x ∈ dom G := by unfold dom comp simp only [ mem_image, mem_setOf_eq, Prod.exists, exists_and_right, exists_eq_right, forall_exists_index ] intro y t ht exact ⟨t, ht.left⟩ /-- If `y ∈ ran (F ∘ G)`, then `y ∈ ran F`. -/ theorem ran_comp_imp_ran_self {F : HRelation β γ} {G : HRelation α β} : y ∈ ran (comp F G) → y ∈ ran F := by unfold ran comp simp only [ mem_image, mem_setOf_eq, Prod.exists, exists_eq_right, forall_exists_index ] intro x t ht exact ⟨t, ht.right⟩ /-- Composition of functions is associative. -/ theorem comp_assoc {R : HRelation γ δ} {S : HRelation β γ} {T : HRelation α β} : comp (comp R S) T = comp R (comp S T) := by calc comp (comp R S) T _ = { p | ∃ t, (p.1, t) ∈ T ∧ (t, p.2) ∈ comp R S} := rfl _ = { p | ∃ t, (p.1, t) ∈ T ∧ (∃ a, (t, a) ∈ S ∧ (a, p.2) ∈ R) } := rfl _ = { p | ∃ t, ∃ a, ((p.1, t) ∈ T ∧ (t, a) ∈ S) ∧ (a, p.2) ∈ R } := by ext p simp only [mem_setOf_eq] apply Iff.intro · intro ⟨t, ht, a, ha⟩ exact ⟨t, a, ⟨ht, ha.left⟩, ha.right⟩ · intro ⟨t, a, h₁, h₂⟩ exact ⟨t, h₁.left, a, h₁.right, h₂⟩ _ = { p | ∃ a, ∃ t, ((p.1, t) ∈ T ∧ (t, a) ∈ S) ∧ (a, p.2) ∈ R } := by ext p simp only [mem_setOf_eq] apply Iff.intro · intro ⟨t, a, h⟩ exact ⟨a, t, h⟩ · intro ⟨a, t, h⟩ exact ⟨t, a, h⟩ _ = { p | ∃ a, (∃ t, (p.1, t) ∈ T ∧ (t, a) ∈ S) ∧ (a, p.2) ∈ R } := by ext p simp only [mem_setOf_eq] apply Iff.intro · intro ⟨a, t, h⟩ exact ⟨a, ⟨t, h.left⟩, h.right⟩ · intro ⟨a, ⟨t, ht⟩, ha⟩ exact ⟨a, t, ht, ha⟩ _ = { p | ∃ a, (p.1, a) ∈ comp S T ∧ (a, p.2) ∈ R } := rfl _ = comp R (comp S T) := rfl /-- The composition of two functions is itself a function. -/ theorem single_valued_comp_is_single_valued {F : HRelation β γ} {G : HRelation α β} (hF : isSingleValued F) (hG : isSingleValued G) : isSingleValued (comp F G) := by unfold isSingleValued intro x hx have ⟨y, hxy⟩ := dom_exists hx have hy := mem_pair_imp_snd_mem_ran hxy refine ⟨y, ⟨hy, hxy⟩, ?_⟩ simp only [and_imp] intro y₁ _ hxy₁ unfold comp at hxy hxy₁ simp only [mem_setOf_eq] at hxy hxy₁ have ⟨t₁, ht₁⟩ := hxy have ⟨t₂, ht₂⟩ := hxy₁ -- First show `t₁ = t₂` and then show `y = y₁`. have t_eq : t₁ = t₂ := by unfold isSingleValued at hG have ⟨t', ht'⟩ := hG x (mem_pair_imp_fst_mem_dom ht₁.left) simp only [and_imp] at ht' have ht₁' := ht'.right t₁ (mem_pair_imp_snd_mem_ran ht₁.left) ht₁.left have ht₂' := ht'.right t₂ (mem_pair_imp_snd_mem_ran ht₂.left) ht₂.left rw [ht₁', ht₂'] unfold isSingleValued at hF rw [t_eq] at ht₁ have ⟨y', hy'⟩ := hF t₂ (mem_pair_imp_fst_mem_dom ht₁.right) simp only [and_imp] at hy' have hk₁ := hy'.right y (mem_pair_imp_snd_mem_ran ht₁.right) ht₁.right have hk₂ := hy'.right y₁ (mem_pair_imp_snd_mem_ran ht₂.right) ht₂.right rw [hk₁, hk₂] /-- For `Relation`s `F` and `G`, `(F ∘ G)⁻¹ = G⁻¹ ∘ F⁻¹`. -/ theorem comp_inv_eq_inv_comp_inv {F : HRelation β γ} {G : HRelation α β} : inv (comp F G) = comp (inv G) (inv F) := by calc inv (comp F G) _ = {p | ∃ t, (p.2, t) ∈ G ∧ (t, p.1) ∈ F} := by rw [Set.Subset.antisymm_iff] apply And.intro · unfold inv comp intro t ht simp only [mem_setOf_eq, Prod.exists] at ht have ⟨a, b, ⟨⟨p, hp⟩, hab⟩⟩ := ht rw [← hab] exact ⟨p, hp⟩ · unfold inv comp intro (a, b) ⟨p, hp⟩ simp only [mem_setOf_eq, Prod.exists, Prod.mk.injEq] exact ⟨b, a, ⟨p, hp⟩, rfl, rfl⟩ _ = {p | ∃ t, (t, p.1) ∈ F ∧ (p.2, t) ∈ G} := by rw [Set.Subset.antisymm_iff] apply And.intro · intro (a, b) ht simp only [mem_setOf_eq] at * have ⟨t, p, q⟩ := ht exact ⟨t, q, p⟩ · intro (a, b) ht simp only [mem_setOf_eq] at * have ⟨t, p, q⟩ := ht exact ⟨t, q, p⟩ _ = {p | ∃ t, (p.1, t) ∈ inv F ∧ (t, p.2) ∈ inv G } := by rw [Set.Subset.antisymm_iff] apply And.intro · intro (a, b) ht simp only [mem_setOf_eq] at * have ⟨t, p, q⟩ := ht refine ⟨t, ?_, ?_⟩ <;> rwa [mem_self_comm_mem_inv] · intro (a, b) ht simp only [mem_setOf_eq] at * have ⟨t, p, q⟩ := ht refine ⟨t, ?_, ?_⟩ <;> rwa [← mem_self_comm_mem_inv] _ = comp (inv G) (inv F) := rfl /-! ## Ordered Pairs -/ /-- Convert a `Relation` into an equivalent representation using `OrderedPair`s. -/ def toOrderedPairs (R : Relation α) : Set (Set (Set α)) := -- Notice here we are using `Set.image` and *not* `Set.Relation.image`. Set.image (fun (x, y) => OrderedPair x y) R /-! ## Equivalence Classes -/ /-- A binary `Relation` `R` is **reflexive** on `A` **iff** `xRx` for all `x ∈ A`. -/ def isReflexive (R : Relation α) (A : Set α) := ∀ a ∈ A, (a, a) ∈ R /-- A binary `Relation` `R` is **symmetric** **iff** whenever `xRy` then `yRx`. -/ def isSymmetric (R : Relation α) := ∀ {x y : α}, (x, y) ∈ R → (y, x) ∈ R /-- A binary `Relation` `R` is **transitive** **iff** whenever `xRy` and `yRz`, then `xRz`. -/ def isTransitive (R : Relation α) := ∀ {x y z : α}, (x, y) ∈ R → (y, z) ∈ R → (x, z) ∈ R /-- `Relation` `R` is an **equivalence relation** on set `A` **iff** `R` is a binary relation that is relexive on `A`, symmetric, and transitive. -/ def isEquivalence (R : Relation α) (A : Set α) := isReflexive R A ∧ isSymmetric R ∧ isTransitive R /-- A **partition** `Π` of a set `A` is a set of nonempty subsets of `A` that is disjoint and exhaustive. -/ def isPartition (P : Set (Set α)) (A : Set α) := (∀ p ∈ P, Set.Nonempty p) ∧ (∀ a ∈ P, ∀ b, b ∈ P → a ≠ b → a ∩ b = ∅) ∧ (∀ a ∈ A, ∃ p, p ∈ P ∧ a ∈ p) /-- A cell of some partition induced by `Relation` `R`. -/ def cell (R : Relation α) (x : α) := { t | (x, t) ∈ R } /-- The equivalence class of `x` modulo `R`. -/ def isEquivClass (R : Relation α) (A : Set α) (x : α) := isEquivalence R A ∧ x ∈ fld R end Relation end Set