/- Chapter 0 Useful Facts About Sets -/ import Bookshelf.Tuple /-- The following describes a so-called "generic" tuple. Like in `Bookshelf.Tuple`, an `n`-tuple is defined recursively like so: `⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩` Unlike `Bookshelf.Tuple`, a "generic" tuple bends the syntax above further. For example, both tuples above are equivalent to: `⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩` for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to prove certain theorems found in [1] (e.g. `lemma_0a`). In general, prefer `Bookshelf.Tuple`. -/ inductive XTuple : (α : Type u) → (size : Nat × Nat) → Type u where | nil : XTuple α (0, 0) | snoc : XTuple α (p, q) → Tuple α r → XTuple α (p + q, r) syntax (priority := high) "x[" term,* "]" : term macro_rules | `(x[]) => `(XTuple.nil) | `(x[$x]) => `(XTuple.snoc x[] t[$x]) | `(x[x[$xs:term,*], $ys:term,*]) => `(XTuple.snoc x[$xs,*] t[$ys,*]) | `(x[$x, $xs:term,*]) => `(XTuple.snoc x[] t[$x, $xs,*]) namespace XTuple open scoped Tuple /- ------------------------------------- - Normalization - -------------------------------------/ /-- Converts an `XTuple` into "normal form". -/ def norm : XTuple α (m, n) → Tuple α (m + n) | x[] => t[] | snoc is ts => Tuple.concat is.norm ts /-- Normalization of an empty `XTuple` yields an empty `Tuple`. -/ theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil := rfl /-- Normalization of a pseudo-empty `XTuple` yields an empty `Tuple`. -/ theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc x[] t[]) = t[] := by unfold norm norm rfl /-- Normalization elimates `snoc` when the `snd` component is `nil`. -/ theorem norm_snoc_nil_elim {t : XTuple α (p, q)} : norm (snoc t t[]) = norm t := XTuple.casesOn t (motive := fun _ t => norm (snoc t t[]) = norm t) (by simp; unfold norm norm; rfl) (fun tf tl => by simp conv => lhs; unfold norm) /-- Normalization eliminates `snoc` when the `fst` component is `nil`. -/ theorem norm_nil_snoc_elim {ts : Tuple α n} : norm (snoc x[] ts) = cast (by simp) ts := by unfold norm norm rw [Tuple.nil_concat_self_eq_self] /-- Normalization distributes across `Tuple.snoc` calls. -/ theorem norm_snoc_snoc_norm : norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by unfold norm rw [←Tuple.concat_snoc_snoc_concat] /-- Normalizing an `XTuple` is equivalent to concatenating the normalized `fst` component with the `snd`. -/ theorem norm_snoc_eq_concat {t₁ : XTuple α (p, q)} {t₂ : Tuple α n} : norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by conv => lhs; unfold norm /- ------------------------------------- - Equality - -------------------------------------/ /-- Implements Boolean equality for `XTuple α n` provided `α` has decidable equality. -/ instance BEq [DecidableEq α] : BEq (XTuple α n) where beq t₁ t₂ := t₁.norm == t₂.norm /- ------------------------------------- - Basic API - -------------------------------------/ /-- Returns the number of entries in the `XTuple`. -/ def size (_ : XTuple α n) := n /-- Returns the number of entries in the "shallowest" portion of the `XTuple`. For example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`. -/ def length : XTuple α n → Nat | x[] => 0 | snoc x[] ts => ts.size | snoc _ ts => 1 + ts.size /-- Returns the first component of our `XTuple`. For example, the first component of tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`. -/ def fst : XTuple α (m, n) → Tuple α m | x[] => t[] | snoc ts _ => ts.norm /-- Given `XTuple α (m, n)`, the `fst` component is equal to an initial segment of size `k` of the tuple in normal form. -/ theorem self_fst_eq_norm_take (t : XTuple α (m, n)) : t.fst = t.norm.take m := match t with | x[] => by unfold fst; rw [Tuple.self_take_zero_eq_nil]; simp | snoc tf tl => by unfold fst conv => rhs; unfold norm rw [Tuple.eq_take_concat] simp /-- If the normal form of an `XTuple` is equal to a `Tuple`, the `fst` component must be a prefix of the `Tuple`. -/ theorem norm_eq_fst_eq_take {t₁ : XTuple α (m, n)} {t₂ : Tuple α (m + n)} : (t₁.norm = t₂) → (t₁.fst = t₂.take m) := fun h => by rw [self_fst_eq_norm_take, h] /-- Returns the first component of our `XTuple`. For example, the first component of tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`. -/ def snd : XTuple α (m, n) → Tuple α n | x[] => t[] | snoc _ ts => ts /- ------------------------------------- - Lemma 0A - -------------------------------------/ section variable {k m n : Nat} variable (p : 1 ≤ m) variable (q : n + (m - 1) = m + k) namespace Lemma_0a lemma n_eq_succ_k : n = k + 1 := let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by intro h have ff : 1 ≤ 0 := h ▸ p ring_nf at ff exact ff.elim calc n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel] _ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h] _ = m' + 1 + k - m' := by simp _ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm] _ = 1 + k := by simp _ = k + 1 := by rw [Nat.add_comm] lemma n_pred_eq_k : n - 1 = k := by have h : k + 1 - 1 = k + 1 - 1 := rfl conv at h => lhs; rw [←n_eq_succ_k p q] simp at h exact h lemma n_geq_one : 1 ≤ n := by rw [n_eq_succ_k p q] simp lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 := Nat.recOn k (by simp; exact p) (fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1) = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc] _ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1) _ = k' + 1 + 1 := by rw [ih]) lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by rw [min_comm_succ_eq p] exact n_eq_succ_k p q lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)] conv => lhs; rw [n_pred_eq_k p q] def cast_norm : XTuple α (n, m - 1) → Tuple α (m + k) | xs => cast (by rw [q]) xs.norm def cast_fst : XTuple α (n, m - 1) → Tuple α (k + 1) | xs => cast (by rw [n_eq_succ_k p q]) xs.fst def cast_take (ys : Tuple α (m + k)) := cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1)) end Lemma_0a open Lemma_0a /--[1] Assume that ⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩. Then x₁ = ⟨y₁, ..., yₖ₊₁⟩. -/ theorem lemma_0a (xs : XTuple α (n, m - 1)) (ys : Tuple α (m + k)) : (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by intro h suffices HEq (cast (_ : Tuple α n = Tuple α (k + 1)) (fst xs)) (cast (_ : Tuple α (min (m + k) (k + 1)) = Tuple α (k + 1)) (Tuple.take ys (k + 1))) from eq_of_heq this congr · exact n_eq_min_comm_succ p q · rfl · exact n_eq_min_comm_succ p q · exact HEq.rfl · exact Eq.recOn (motive := fun _ h => HEq (_ : n + (n - 1) = n + k) (cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q]))) (show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by rw [n_eq_min_comm_succ p q]) HEq.rfl · exact n_geq_one p q · exact n_pred_eq_k p q · exact Eq.symm (n_eq_min_comm_succ p q) · exact n_pred_eq_k p q · rw [self_fst_eq_norm_take] unfold cast_norm at h simp at h rw [←h, ←n_eq_succ_k p q] have h₂ := Eq.recOn (motive := fun x h => HEq (Tuple.take xs.norm n) (Tuple.take (cast (show Tuple α (n + (m - 1)) = Tuple α x by rw [h]) xs.norm) n)) (show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q]) HEq.rfl exact Eq.recOn (motive := fun x h => HEq (cast h (Tuple.take xs.norm n)) (Tuple.take (cast (_ : Tuple α (n + (m - 1)) = Tuple α (m + k)) xs.norm) n)) (show Tuple α (min (n + (m - 1)) n) = Tuple α n by simp) h₂ end end XTuple