import Common.Finset import Common.Geometry.Rectangle.Orthogonal import Common.List.Basic import Common.List.NonEmpty /-! # Common.Geometry.StepFunction Characterization of step functions. -/ namespace Geometry /-- An interval defines a range of values, characterized by a "left" value and a "right" value. We require these values to be distinct; we do not support the notion of an empty interval. -/ structure Interval (α : Type _) [LT α] where left : α right : α h : left < right namespace Interval /-- Computes the size of the interval. -/ def size [LT α] [Sub α] (i : Interval α) : α := i.right - i.left /-- Computes the midpoint of the interval. -/ def midpoint [LT α] [Add α] [HDiv α ℝ α] (i : Interval α) : α := (i.left + i.right) / (2 : ℝ) /-- Convert an `Interval` into a `Set.Ico`. -/ def toIco [Preorder α] (i : Interval α) : Set α := Set.Ico i.left i.right /-- Convert an `Interval` into a `Set.Ioc`. -/ def toIoc [Preorder α] (i : Interval α) : Set α := Set.Ioc i.left i.right /-- Convert an `Interval` into a `Set.Icc`. -/ def toIcc [Preorder α] (i : Interval α) : Set α := Set.Icc i.left i.right /-- Convert an `Interval` into a `Set.Ioo`. -/ def toIoo [Preorder α] (i : Interval α) : Set α := Set.Ioo i.left i.right end Interval /-- A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction` if there exists a partition `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is constant on each open subinterval of `P`. Instead of maintaining a function from `[a, b]` to `ℝ`, we instead maintain a function that maps each partition index to some constant value. -/ structure StepFunction where ivls : List.NonEmpty (Interval ℝ) connected : ∀ I ∈ ivls.toList.pairwise (·.right = ·.left), I toFun : Fin ivls.length → ℝ namespace StepFunction /-- The ordinate set of the `StepFunction`. -/ def toSet (sf : StepFunction) : Set Point := ⋃ i ∈ Finset.finRange sf.ivls.length, let I := sf.ivls[i] Rectangle.Orthogonal.toSet ⟨ { tl := ⟨I.left, sf.toFun i⟩, bl := ⟨I.left, 0⟩, br := ⟨I.right, 0⟩, has_right_angle := sorry }, by simp ⟩ end StepFunction end Geometry