import Mathlib.Data.Set.Basic /-! # Enderton.Chapter_1 Introduction -/ namespace Enderton.Set.Chapter_1 /-! ### Exercise 1.1 Which of the following become true when "∈" is inserted in place of the blank? Which become true when "⊆" is inserted? -/ /-- The `∅` does not equal the singleton set containing `∅`. -/ lemma empty_ne_singleton_empty (h : ∅ = ({∅} : Set (Set α))) : False := absurd h (Ne.symm $ Set.singleton_ne_empty (∅ : Set α)) /-- #### Exercise 1.1a `{∅} ___ {∅, {∅}}` -/ theorem exercise_1_1a : {∅} ∈ ({∅, {∅}} : Set (Set (Set α))) ∧ {∅} ⊆ ({∅, {∅}} : Set (Set (Set α))) := ⟨by simp, by simp⟩ /-- #### Exercise 1.1b `{∅} ___ {∅, {{∅}}}` -/ theorem exercise_1_1b : {∅} ∉ ({∅, {{∅}}}: Set (Set (Set (Set α)))) ∧ {∅} ⊆ ({∅, {{∅}}}: Set (Set (Set (Set α)))) := by refine ⟨?_, by simp⟩ intro h simp at h exact empty_ne_singleton_empty h /-- #### Exercise 1.1c `{{∅}} ___ {∅, {∅}}` -/ theorem exercise_1_1c : {{∅}} ∉ ({∅, {∅}} : Set (Set (Set (Set α)))) ∧ {{∅}} ⊆ ({∅, {∅}} : Set (Set (Set (Set α)))) := ⟨by simp, by simp⟩ /-- #### Exercise 1.1d `{{∅}} ___ {∅, {{∅}}}` -/ theorem exercise_1_1d : {{∅}} ∈ ({∅, {{∅}}} : Set (Set (Set (Set α)))) ∧ ¬ {{∅}} ⊆ ({∅, {{∅}}} : Set (Set (Set (Set α)))) := by refine ⟨by simp, ?_⟩ intro h simp at h exact empty_ne_singleton_empty h /-- #### Exercise 1.1e `{{∅}} ___ {∅, {∅, {∅}}}` -/ theorem exercise_1_1e : {{∅}} ∉ ({∅, {∅, {∅}}} : Set (Set (Set (Set α)))) ∧ ¬ {{∅}} ⊆ ({∅, {∅, {∅}}} : Set (Set (Set (Set α)))) := by apply And.intro · intro h simp at h rw [Set.ext_iff] at h have nh := h ∅ simp at nh exact empty_ne_singleton_empty nh · intro h simp at h rw [Set.ext_iff] at h have nh := h {∅} simp at nh /-- ### Exercise 1.2 Show that no two of the three sets `∅`, `{∅}`, and `{{∅}}` are equal to each other. -/ theorem exercise_1_2 : ∅ ≠ ({∅} : Set (Set α)) ∧ ∅ ≠ ({{∅}} : Set (Set (Set α))) ∧ {∅} ≠ ({{∅}} : Set (Set (Set α))) := by refine ⟨?_, ⟨?_, ?_⟩⟩ · intro h exact empty_ne_singleton_empty h · intro h exact absurd h (Ne.symm $ Set.singleton_ne_empty ({∅} : Set (Set α))) · intro h simp at h exact empty_ne_singleton_empty h /-- ### Exercise 1.3 Show that if `B ⊆ C`, then `𝓟 B ⊆ 𝓟 C`. -/ theorem exercise_1_3 (h : B ⊆ C) : Set.powerset B ⊆ Set.powerset C := by intro x hx exact Set.Subset.trans hx h /-- ### Exercise 1.4 Assume that `x` and `y` are members of a set `B`. Show that `{{x}, {x, y}} ∈ 𝓟 𝓟 B`. -/ theorem exercise_1_4 (x y : α) (hx : x ∈ B) (hy : y ∈ B) : {{x}, {x, y}} ∈ Set.powerset (Set.powerset B) := by unfold Set.powerset simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] rw [Set.subset_def] intro z hz simp at hz apply Or.elim hz · intro h rwa [h, Set.mem_setOf_eq, Set.singleton_subset_iff] · intro h rw [h, Set.mem_setOf_eq] exact Set.union_subset (Set.singleton_subset_iff.mpr hx) (Set.singleton_subset_iff.mpr hy) end Enderton.Set.Chapter_1