\documentclass{report} \input{../../preamble} \makeleancommands{../..} \begin{document} \header{Elements of Set Theory}{Herbert B. Enderton} \tableofcontents \begingroup \renewcommand\thechapter{R} \setcounter{chapter}{0} \addtocounter{chapter}{-1} \chapter{Reference}% \label{chap:reference} \section{\defined{Empty Set Axiom}}% \label{ref:empty-set-axiom} There is a set having no members: $$\exists B, \forall x, x \not\in B.$$ \begin{axiom} \lean*{Mathlib/Init/Set}{Set.emptyCollection} \end{axiom} \section{\defined{Extensionality Axiom}}% \label{ref:extensionality-axiom} If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, \left[\forall x, (x \in A \iff x \in B) \Rightarrow A = B\right].$$ \begin{axiom} \lean*{Mathlib/Init/Set}{Set.ext} \end{axiom} \section{\defined{Pair Set}}% \label{ref:pair-set} For any sets $u$ and $v$, the \textbf{pair set $\{u, v\}$} is the set whose only members are $u$ and $v$. \begin{definition} \statementpadding \lean*{Mathlib/Init/Set}{Set.insert} \lean*{Mathlib/Init/Set}{Set.singleton} \end{definition} \section{\defined{Pairing Axiom}}% \label{ref:pairing-axiom} For any sets $u$ and $v$, there is a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \iff x = u \text{ or } x = v).$$ \begin{axiom} \statementpadding \lean*{Mathlib/Init/Set}{Set.insert} \lean*{Mathlib/Init/Set}{Set.singleton} \end{axiom} \section{\defined{Power Set}}% \label{ref:power-set} For any set $a$, the \textbf{power set $\powerset{a}$} is the set whose members are exactly the subsets of $a$. \begin{definition} \lean*{Mathlib/Init/Set}{Set.powerset} \end{definition} \section{\defined{Power Set Axiom}}% \label{ref:power-set-axiom} For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$ \begin{axiom} \lean*{Mathlib/Init/Set}{Set.powerset} \end{axiom} \section{\defined{Subset Axioms}}% \label{ref:subset-axioms} For each formula $\phi$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots \forall t_k, \forall c, \exists B, \forall x, (x \in B \iff x \in c \land \phi).$$ \begin{axiom} \lean*{Mathlib/Init/Set}{Set.Subset} \end{axiom} \section{\defined{Union Axiom}}% \label{ref:union-axiom} For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$: $$\forall A, \exists B, \forall x \left[ x \in B \iff (\exists b \in A) x \in b \right]$$ \begin{axiom} \lean*{Mathlib/Data/Set/Lattice}{Set.sUnion} \end{axiom} \section{\defined{Union Axiom, Preliminary Form}}% \label{ref:union-axiom-preliminary-form} For any sets $a$ and $b$, there is a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall a, \forall b, \exists B, \forall x, (x \in B \iff x \in a \text{ or } x \in b).$$ \begin{axiom} \lean*{Mathlib/Init/Set}{Set.union} \end{axiom} \endgroup \chapter{Introduction}% \label{chap:introduction} \section{Baby Set Theory}% \label{sec:baby-set-theory} \subsection{\verified{Exercise 1.1}}% \label{sub:exercise-1.1} Which of the following become true when "$\in$" is inserted in place of the blank? Which become true when "$\subseteq$" is inserted? \subsubsection{\verified{Exercise 1.1a}}% \label{ssub:exercise-1.1a} $\{\emptyset\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1a} Because the \textit{object} $\{\emptyset\}$ is a member of the right-hand set, the statement is \textbf{true} in the case of "$\in$". Because the \textit{members} of $\{\emptyset\}$ are all members of the right-hand set, the statement is also \textbf{true} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1b}}% \label{ssub:exercise-1.11b} $\{\emptyset\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1b} Because the \textit{object} $\{\emptyset\}$ is not a member of the right-hand set, the statement is \textbf{false} in the case of "$\in$". Because the \textit{members} of $\{\emptyset\}$ are all members of the right-hand set, the statement is \textbf{true} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1c}}% \label{ssub:exercise-1.1c} $\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1c} Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is \textbf{false} in the case of "$\in$". Because the \textit{members} of $\{\{\emptyset\}\}$ are all members of the right-hand set, the statement is \textbf{true} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1d}}% \label{ssub:exercise-1.1d} $\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1d} Because the \textit{object} $\{\{\emptyset\}\}$ is a member of the right-hand set, the statement is \textbf{true} in the case of "$\in$". Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is \textbf{false} in the case of "$\subseteq$". \end{proof} \subsubsection{\verified{Exercise 1.1e}}% \label{ssub:exercise-1.1e} $\{\{\emptyset\}\} \_\_ \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_1e} Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is \textbf{false} in the case of "$\in$". Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is \textbf{false} in the case of "$\subseteq$". \end{proof} \subsection{\verified{Exercise 1.2}}% \label{sub:exercise-1.2} Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to each other. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_2} By the \nameref{ref:extensionality-axiom}, $\emptyset$ is only equal to $\emptyset$. This immediately shows it is not equal to the other two. Now consider object $\emptyset$. This object is a member of $\{\emptyset\}$ but is not a member of $\{\{\emptyset\}\}$. Again, by the \nameref{ref:extensionality-axiom}, these two sets must be different. \end{proof} \subsection{\verified{Exercise 1.3}}% \label{sub:exercise-1.3} Show that if $B \subseteq C$, then $\powerset{B} \subseteq \powerset{C}$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_3} Let $x \in \powerset{B}$. By definition of the \nameref{ref:power-set}, $x$ is a subset of $B$. By hypothesis, $B \subseteq C$. Then $x \subseteq C$. Again by definition of the \nameref{ref:power-set}, it follows $x \in \powerset{C}$. \end{proof} \subsection{\verified{Exercise 1.4}}% \label{sub:exercise-1.4} Assume that $x$ and $y$ are members of a set $B$. Show that $\{\{x\}, \{x, y\}\} \in \powerset{\powerset{B}}.$ \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_1\_4} Let $x$ and $y$ be members of set $B$. Then $\{x\}$ and $\{x, y\}$ are subsets of $B$. By definition of the \nameref{ref:power-set}, $\{x\}$ and $\{x, y\}$ are members of $\powerset{B}$. Then $\{\{x\}, \{x, y\}\}$ is a subset of $\powerset{B}$. By definition of the \nameref{ref:power-set}, $\{\{x\}, \{x, y\}\}$ is a member of $\powerset{\powerset{B}}$. \end{proof} \section{Sets - An Informal View}% \label{sec:sets-informal-view} \subsection{\partial{Exercise 2.1}}% \label{sub:exercise-2.1} Define the rank of a set $c$ to be the least $\alpha$ such that $c \subseteq V_\alpha$. Compute the rank of $\{\{\emptyset\}\}$. Compute the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$. \begin{proof} We first compute the values of $V_n$ for $0 \leq n \leq 3$ under the assumption the set of atoms $A$ at the bottom of the hierarchy is empty. \begin{align*} V_0 & = \emptyset \\ V_1 & = V_0 \cup \powerset{V_0} \\ & = \emptyset \cup \{\emptyset\} \\ & = \{\emptyset\} \\ V_2 & = V_1 \cup \powerset{V_1} \\ & = \{\emptyset\} \cup \powerset{\{\emptyset\}} \\ & = \{\emptyset\} \cup \{\emptyset, \{\emptyset\}\} \\ & = \{\emptyset, \{\emptyset\}\} \\ V_3 & = V_2 \cup \powerset{V_2} \\ & = \{\emptyset, \{\emptyset\}\} \cup \powerset{\{\emptyset, \{\emptyset\}\}} \\ & = \{\emptyset, \{\emptyset\}\} \cup \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ & = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \end{align*} It then immediately follows $\{\{\emptyset\}\}$ has rank $2$ and $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ has rank $3$. \end{proof} \subsection{\partial{Exercise 2.2}}% \label{sub:exercise-2.2} We have stated that $V_{\alpha + 1} = A \cup \powerset{V_\alpha}$. Prove this at least for $\alpha < 3$. \begin{proof} Let $A$ be the set of atoms in our set hierarchy. Let $P(n)$ be the predicate, "$V_{n + 1} = A \cup \powerset{V_n}$." We prove $P(n)$ holds true for all natural numbers $n \geq 1$ via induction. \paragraph{Base Case}% Let $n = 1$. By definition, $V_1 = V_0 \cup \powerset{V_0}$. By definition, $V_0 = A$. Therefore $V_1 = A \cup \powerset{V_0}$. This proves $P(1)$ holds true. \paragraph{Induction Step}% Suppose $P(n)$ holds true for some $n \geq 1$. Consider $V_{n+1}$. By definition, $V_{n+1} = V_n \cup \powerset{V_n}$. Therefore, by the induction hypothesis, \begin{align} V_{n+1} & = V_n \cup \powerset{V_n} \nonumber \\ & = (A \cup \powerset{V_{n-1}}) \cup \powerset{V_n} \nonumber \\ & = A \cup (\powerset{V_{n-1}} \cup \powerset{V_n}) \label{sub:exercise-2.2-eq1} \end{align} But $V_{n-1}$ is a subset of $V_n$. \nameref{sub:exercise-1.3} then implies $\powerset{V_{n-1}} \subseteq \powerset{V_n}$. This means \eqref{sub:exercise-2.2-eq1} can be simplified to $$V_{n+1} = A \cup \powerset{V_n},$$ proving $P(n+1)$ holds true. \paragraph{Conclusion}% By mathematical induction, it follows for all $n \geq 1$, $P(n)$ is true. \end{proof} \subsection{\partial{Exercise 2.3}}% \label{sub:exercise-2.3} List all the members of $V_3$. List all the members of $V_4$. (It is to be assumed here that there are no atoms.) \begin{proof} As seen in the proof of \nameref{sub:exercise-2.1}, $$V_3 = \{ \emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\} \}.$$ By \nameref{sub:exercise-2.2}, $V_4 = \powerset{V_3}$ (since it is assumed there are no atoms). Thus \begin{align*} & V_4 = \{ \\ & \qquad \emptyset, \\ & \qquad \{\emptyset\}, \\ & \qquad \{\{\emptyset\}\}, \\ & \qquad \{\{\{\emptyset\}\}\}, \\ & \qquad \{\{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}\}, \\ & \qquad \{\emptyset, \{\{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\{\emptyset\}, \{\{\emptyset\}\}\}, \\ & \qquad \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ & \qquad \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ & \qquad \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ & \}. \end{align*} \end{proof} \chapter{Axioms and Operations}% \label{chap:axioms-operations} \section{Axioms}% \label{sec:axioms} \subsection{\partial{Theorem 2A}}% \label{sub:theorem-2a} \begin{theorem}[2A] There is no set to which every set belongs. \note{This was revisited after reading Enderton's proof prior.} \end{theorem} \begin{proof} Let $A$ be an arbitrary set. Define $B = \{ x \in A \mid x \not\in x \}$. By the \nameref{ref:subset-axioms}, $B$ is a set. Then $$B \in B \iff B \in A \land B \not\in B.$$ If $B \in A$, then $B \in B \iff B \not\in B$, a contradiction. Thus $B \not\in A$. Since this process holds for any set $A$, there must exist no set to which every set belongs. \end{proof} \subsection{\partial{Theorem 2B}}% \label{sub:theorem-2b} \begin{theorem}[2B] For any nonempty set $A$, there exists a unique set $B$ such that for any $x$, $$x \in B \iff x \text{ belongs to every member of } A.$$ \end{theorem} \begin{proof} Suppose $A$ is a nonempty set. This ensures the statement we are trying to prove does not vacuously hold for all sets $x$ (which would yield a contradiction due to \nameref{sub:theorem-2b}). By the \nameref{ref:union-axiom}, $\bigcup A$ is a set. Define $$B = \{ x \in \bigcup A \mid (\forall b \in A), x \in b \}.$$ By the \nameref{ref:subset-axioms}, $B$ is indeed a set. By construction, $$\forall x, x \in B \iff x \text{ belongs to every member of } A.$$ By the \nameref{ref:extensionality-axiom}, $B$ is unique. \end{proof} \section{Exercises 3}% \label{sec:exercises-3} \subsection{\verified{Exercise 3.1}}% \label{sub:exercise-3.1} Assume that $A$ is the set of integers divisible by $4$. Similarly assume that $B$ and $C$ are the sets of integers divisible by $9$ and $10$, respectively. What is in $A \cap B \cap C$? \begin{answer} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_1} The set of integers divisible by $4$, $9$, and $10$. \end{answer} \subsection{\verified{Exercise 3.2}}% \label{sub:exercise-3.2} Give an example of sets $A$ and $B$ for which $\bigcup A = \bigcup B$ but $A \neq B$. \begin{answer} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_2} Let $A = \{\{1\}, \{2\}\}$ and $B = \{\{1, 2\}\}$. \end{answer} \subsection{\verified{Exercise 3.3}}% \label{sub:exercise-3.3} Show that every member of a set $A$ is a subset of $\bigcup A$. (This was stated as an example in this section.) \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_3} Let $x \in A$. By definition, $$\bigcup A = \{ y \mid (\exists b \in A) y \in b\}.$$ Then $\{ y \mid y \in x\} \subseteq \bigcup A$. But $\{ y \mid y \in x\} = x$. Thus $x \subseteq \bigcup A$. \end{proof} \subsection{\verified{Exercise 3.4}}% \label{sub:exercise-3.4} Show that if $A \subseteq B$, then $\bigcup A \subseteq \bigcup B$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_4} Let $A$ and $B$ be sets such that $A \subseteq B$. Let $x \in \bigcup A$. By definition of the union, there exists some $b \in A$ such that $x \in b$. By definition of the subset, $b \in B$. This immediatley implies $x \in \bigcup B$. Since this holds for all $x \in \bigcup A$, it follows $\bigcup A \subseteq \bigcup B$. \end{proof} \subsection{\verified{Exercise 3.5}}% \label{sub:exercise-3.5} Assume that every member of $\mathscr{A}$ is a subset of $B$. Show that $\bigcup \mathscr{A} \subseteq B$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_5} Let $x \in \bigcup \mathscr{A}$. By definition, $$\bigcup \mathscr{A} = \{ y \mid (\exists b \in A)y \in b \}.$$ Then there exists some $b \in A$ such that $x \in b$. By hypothesis, $b \subseteq B$. Thus $x$ must also be a member of $B$. Since this holds for all $x \in \bigcup \mathscr{A}$, it follows $\bigcup \mathscr{A} \subseteq B$. \end{proof} \subsection{\verified{Exercise 3.6a}}% \label{sub:exercise-3.6a} Show that for any set $A$, $\bigcup \powerset{A} = A$. \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_6a} We prove that (i) $\bigcup \powerset{A} \subseteq A$ and (ii) $A \subseteq \bigcup \powerset{A}$. \paragraph{(i)}% \label{par:exercise-3.6a-i} By definition, the \nameref{ref:power-set} of $A$ is the set of all subsets of $A$. In other words, every member of $\powerset{A}$ is a subset of $A$. By \nameref{sub:exercise-3.5}, $\bigcup \powerset{A} \subseteq A$. \paragraph{(ii)}% \label{par:exercise-3.6a-ii} Let $x \in A$. By definition of the power set of $A$, $\{x\} \in \powerset{A}$. By definition of the union, $$\bigcup \powerset{A} = \{ y \mid (\exists b \in \powerset{A}), y \in b).$$ Since $x \in \{x\}$ and $\{x\} \in \powerset{A}$, it follows $x \in \bigcup \powerset{A}$. Thus $A \subseteq \bigcup \powerset{A}$. \paragraph{Conclusion}% By \nameref{par:exercise-3.6a-i} and \nameref{par:exercise-3.6a-ii}, $\bigcup \powerset{A} = A$. \end{proof} \subsection{\verified{Exercise 3.6b}}% \label{sub:exercise-3.6b} Show that $A \subseteq \powerset{\bigcup A}$. Under what conditions does equality hold? \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_6b} Let $x \in A$. By \nameref{sub:exercise-3.3}, $x$ is a subset of $\bigcup A$. By the definition of the \nameref{ref:power-set}, $$\powerset{\bigcup A} = \{ y \mid y \subseteq \bigcup A \}.$$ Therefore $x \in \powerset{\bigcup A}$. Since this holds for all $x \in A$, $A \subseteq \powerset{\bigcup A}$. \suitdivider We show equality holds if and only if there exists some set $B$ such that $A = \powerset{B}$. \paragraph{($\Rightarrow$)}% \label{par:exercise-3.6b-right} Suppose $A = \powerset{\bigcup A}$. Then our statement immediately follows by settings $B = \bigcup A$. \paragraph{($\Leftarrow$)}% \label{par:exercise-3.6b-left} Suppose there exists some set $B$ such that $A = \powerset{B}$. Therefore \begin{align*} \powerset{\bigcup A} & = \powerset{\left(\bigcup {\powerset {B}}\right)} \\ & = \powerset{B} & \textref{sub:exercise-3.6a} \\ & = A. \end{align*} \paragraph{Conclusion}% By \nameref{par:exercise-3.6b-right} and \nameref{par:exercise-3.6b-left}, $A = \powerset{\bigcup A}$ if and only if there exists some set $B$ such that $A = \powerset{B}$. \end{proof} \subsection{\verified{Exercise 3.7a}}% \label{sub:exercise-3.7a} Show that for any sets $A$ and $B$, $$\powerset{A} \cap \powerset{B} = \powerset{(A \cap B)}.$$ \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_7a} Let $A$ and $B$ be arbitrary sets. We show that $\powerset{A} \cap \powerset{B} \subseteq \powerset{(A \cap B)}$ and then show that $\powerset{A} \cap \powerset{B} \supseteq \powerset{(A \cap B)}$. \paragraph{($\subseteq$)}% Let $x \in \powerset{A} \cap \powerset{B}$. That is, $x \in \powerset{A}$ and $x \in \powerset{B}$. By the definition of the \nameref{ref:power-set}, \begin{align*} \powerset{A} & = \{ y \mid y \subseteq A \} \\ \powerset{B} & = \{ y \mid y \subseteq B \} \end{align*} Thus $x \subseteq A$ and $x \subseteq B$, meaning $x \subseteq A \cap B$. But then $x \in \powerset{(A \cap B)}$, the set of all subsets of $A \cap B$. Since this holds for all $x \in \powerset{A} \cap \powerset{B}$, it follows $$\powerset{A} \cap \powerset{B} \subseteq \powerset{(A \cap B)}.$$ \paragraph{($\supseteq$)}% Let $x \in \powerset{(A \cap B)}$. By the definition of the \nameref{ref:power-set}, $$\powerset{(A \cap B)} = \{ y \mid y \subseteq A \cap B \}.$$ Thus $x \subseteq A \cap B$, meaning $x \subseteq A$ and $x \subseteq B$. But this implies $x \in \powerset{A}$, the set of all subsets of $A$. Likewise $x \in \powerset{B}$, the set of all subsets of $B$. Thus $x \in \powerset{A} \cap \powerset{B}$. Since this holds for all $x \in \powerset{(A \cap B)}$, it follows $$\powerset{(A \cap B)} \subseteq \powerset{A} \cap \powerset{B}.$$ \paragraph{Conclusion}% Since each side of our identity is a subset of the other, $$\powerset{(A \cap B)} = \powerset{A} \cap \powerset{B}.$$ \end{proof} \subsection{\verified{Exercise 3.7b}}% \label{sub:exercise-3.7b} Show that $\powerset{A} \cup \powerset{B} \subseteq \powerset{(A \cup B)}$. Under what conditions does equality hold? \begin{proof} \statementpadding \lean*{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_7b\_i} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_7b\_ii} Let $x \in \powerset{A} \cup \powerset{B}$. By definition, $x \in \powerset{A}$ or $x \in \powerset{B}$ (or both). By the definition of the \nameref{ref:power-set}, \begin{align*} \powerset{A} &= \{ y \mid y \subseteq A \} \\ \powerset{B} &= \{ y \mid y \subseteq B \}. \end{align*} Thus $x \subseteq A$ or $x \subseteq B$. Therefore $x \subseteq A \cup B$. But then $x \in \powerset{(A \cup B)}$, the set of all subsets of $A \cup B$. \suitdivider We show equality holds if and only if one of $A$ or $B$ is a subset of the other. \paragraph{($\Rightarrow$)}% \label{par:exercise-3.7b-right} Suppose \begin{equation} \label{sub:exercise-3.7b-eq1} \powerset{A} \cup \powerset{B} = \powerset{(A \cup B)}. \end{equation} By the definition of the \nameref{ref:power-set}, $A \cup B \in \powerset{(A \cup B)}$. Then \eqref{sub:exercise-3.7b-eq1} implies $A \cup B \in \powerset{A} \cup \powerset{B}$. That is, $A \cup B \in \powerset{A}$ or $A \cup B \in \powerset{B}$ (or both). For the sake of contradiction, suppose $A \not\subseteq B$ and $B \not\subseteq A$. Then there exists an element $x \in A$ such that $x \not\in B$ and there exists an element $y \in B$ such that $y \not\in A$. But then $A \cup B \not\in \powerset{A}$ since $y$ cannot be a member of a member of $\powerset{A}$. Likewise, $A \cup B \not\in \powerset{B}$ since $x$ cannot be a member of a member of $\powerset{B}$. Therefore our assumption is incorrect. In other words, $A \subseteq B$ or $B \subseteq A$. \paragraph{($\Leftarrow$)}% \label{par:exercise-3.7b-left} WLOG, suppose $A \subseteq B$. Then, by \nameref{sub:exercise-1.3}, $\powerset{A} \subseteq \powerset{B}$. Thus \begin{align*} \powerset{A} \cup \powerset{B} & = \powerset{B} \\ & = \powerset{A \cup B}. \end{align*} \paragraph{Conclusion}% By \nameref{par:exercise-3.7b-right} and \nameref{par:exercise-3.7b-left}, it follows $\powerset{A} \cup \powerset{B} \subseteq \powerset{(A \cup B)}$ if and only if $A \subseteq B$ or $B \subseteq A$. \end{proof} \subsection{\partial{Exercise 3.8}}% \label{sub:exercise-3.8} Show that there is no set to which every singleton (that is, every set of the form $\{x\}$) belongs. [\textit{Suggestion}: Show that from such a set, we could construct a set to which every set belonged.] \begin{proof} We proceed by contradiction. Suppose there existed a set $A$ consisting of every singleton. Then the \nameref{ref:union-axiom} suggests $\bigcup A$ is a set. But this set is precisely the class of all sets, which is \textit{not} a set. Thus our original assumption was incorrect. That is, there is no set to which every singleton belongs. \end{proof} \subsection{\verified{Exercise 3.9}}% \label{sub:exercise-3.9} Give an example of sets $a$ and $B$ for which $a \in B$ but $\powerset{a} \not\in \powerset{B}$. \begin{answer} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_9} Let $a = \{1\}$ and $B = \{\{1\}\}$. Then \begin{align*} \powerset{a} & = \{\emptyset, \{1\}\} \\ \powerset{B} & = \{\emptyset, \{\{1\}\}\}. \end{align*} It immediately follows that $\powerset{a} \not\in \powerset{B}$. \end{answer} \subsection{\verified{Exercise 3.10}}% \label{sub:exercise-3.10} Show that if $a \in B$, then $\powerset{a} \in \powerset{\powerset{\bigcup B}}$. [\textit{Suggestion}: If you need help, look in the Appendix.] \begin{proof} \lean{Bookshelf/Enderton/Set/Chapter\_1} {Enderton.Set.Chapter\_1.exercise\_3\_10} Suppose $a \in B$. By \nameref{sub:exercise-3.3}, $a \subseteq \bigcup B$. By \nameref{sub:exercise-1.3}, $\powerset{a} \subseteq \powerset{\bigcup B}$. By the definition of the \nameref{ref:power-set}, $$\powerset{\powerset{\bigcup B}} = \{ y \mid y \subseteq \powerset{\bigcup B} \}.$$ Therefore $\powerset{a} \in \powerset{\powerset{\bigcup B}}$. \end{proof} \section{Algebra of Sets}% \label{sec:algebra-sets} \subsection{\verified{Commutative Laws}}% \label{sub:commutative-laws} For any sets $A$ and $B$, \begin{align*} A \cup B = B \cup A \\ A \cap B = B \cap A \end{align*} \begin{proof} \statementpadding \lean*{Mathlib/Data/Set/Basic}{Set.union\_comm} \lean{Mathlib/Data/Set/Basic}{Set.inter\_comm} Let $A$ and $B$ be sets. We show (i) $A \cup B = B \cup A$ and then (ii) $A \cap B = B \cap A$. \paragraph{(i)}% By the definition of the union of sets, \begin{align*} A \cup B & = \{ x \mid x \in A \lor x \in B \} \\ & = \{ x \mid x \in B \lor x \in A \} \\ & = B \cup A. \end{align*} \paragraph{(ii)}% By the definition of the intersection of sets, \begin{align*} A \cap B & = \{ x \mid x \in A \land x \in B \} \\ & = \{ x \mid x \in B \land x \in A \} \\ & = B \land A. \end{align*} \end{proof} \subsection{\verified{Associative Laws}}% \label{sub:associative-laws} For any sets $A$, $B$ and $C$, \begin{align*} A \cup (B \cup C) & = (A \cup B) \cup C \\ A \cap (B \cap C) & = (A \cap B) \cap C \end{align*} \begin{proof} \statementpadding \lean*{Mathlib/Data/Set/Basic}{Set.union\_assoc} \lean{Mathlib/Data/Set/Basic}{Set.inter\_assoc} Let $A$, $B$, and $C$ be sets. We show (i) $A \cup (B \cup C) = (A \cup B) \cup C$ and then (ii) $A \cap (B \cap C) = (A \cap B) \cap C$. \paragraph{(i)}% By the definition of the union of sets, \begin{align*} A \cup (B \cup C) & = \{ x \mid x \in A \lor x \in (B \cup C) \} \\ & = \{ x \mid x \in A \lor x \in \{ y \mid y \in B \lor C \}\} \\ & = \{ x \mid x \in A \lor (x \in B \lor x \in C) \} \\ & = \{ x \mid (x \in A \lor x \in B) \lor x \in C \} \\ & = \{ x \mid x \in \{ y \mid y \in A \lor y \in B \} \lor x \in C \} \\ & = \{ x \mid x \in (A \cup B) \lor x \in C \} \\ & = (A \cup B) \cup C. \end{align*} \paragraph{(ii)}% By the definition of the intersection of sets, \begin{align*} A \cap (B \cap C) & = \{ x \mid x \in A \land x \in (B \cap C) \} \\ & = \{ x \mid x \in A \land x \in \{ y \mid y \in B \land y \in C \}\} \\ & = \{ x \mid x \in A \land (x \in B \land x \in C) \} \\ & = \{ x \mid (x \in A \land x \in B) \land x \in C \} \\ & = \{ x \mid x \in \{ y \mid y \in A \land y \in B \} \land x \in C \} \\ & = \{ x \mid x \in (A \cap B) \land x \in C \} \\ & = (A \cap B) \cap C. \end{align*} \end{proof} \subsection{\verified{Distributive Laws}}% \label{sub:distributive-laws} For any sets $A$, $B$, and $C$, \begin{align*} A \cap (B \cup C) & = (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) & = (A \cup B) \cap (A \cup C) \end{align*} \begin{proof} \statementpadding \lean*{Mathlib/Data/Set/Basic}{Set.inter\_distrib\_left} \lean{Mathlib/Data/Set/Basic}{Set.union\_distrib\_left} Let $A$, $B$, and $C$ be sets. We show (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and then (ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. \paragraph{(i)}% By the definition of the union and intersection of sets, \begin{align*} A \cap (B \cup C) & = \{ x \mid x \in A \land x \in B \cup C \} \\ & = \{ x \mid x \in A \land x \in \{ y \mid y \in B \lor y \in C \}\} \\ & = \{ x \mid x \in A \land (x \in B \lor x \in C) \} \\ & = \{ x \mid (x \in A \land x \in B) \lor (x \in A \land x \in C) \} \\ & = \{ x \mid x \in A \cap B \lor x \in A \cap C \} \\ & = (A \cap B) \cup (A \cap C). \end{align*} \paragraph{(ii)}% By the definition of the union and intersection of sets, \begin{align*} A \cup (B \cap C) & = \{ x \mid x \in A \lor x \in B \cap C \} \\ & = \{ x \mid x \in A \lor x \in \{ y \mid y \in B \land y \in C \}\} \\ & = \{ x \mid x \in A \lor (x \in B \land x \in C) \} \\ & = \{ x \mid (x \in A \lor x \in B) \land (x \in A \lor x \in C) \} \\ & = \{ x \mid x \in A \cup B \land x \in A \cup C \} \\ & = (A \cup B) \cap (A \cup C). \end{align*} \end{proof} \subsection{\verified{De Morgan's Laws}}% \label{sub:de-morgans-laws} For any sets $A$, $B$, and $C$, \begin{align*} C - (A \cup B) & = (C - A) \cap (C - B) \\ C - (A \cap B) & = (C - A) \cup (C - B) \end{align*} \begin{proof} \statementpadding \lean*{Mathlib/Data/Set/Basic}{Set.diff\_inter\_diff} \lean{Mathlib/Data/Set/Basic}{Set.diff\_inter} Let $A$, $B$, and $C$ be sets. We show (i) $C - (A \cup B) = (C - A) \cap (C - B)$ and then (ii) $C - (A \cap B) = (C - A) \cup (C - B)$. \paragraph{(i)}% By definition of the union, intersection, and relative complements of sets, \begin{align*} C - (A \cup B) & = \{ x \mid x \in C \land x \not\in A \cup B \} \\ & = \{ x \mid x \in C \land x \not\in \{ y \mid y \in A \lor y \in B \}\} \\ & = \{ x \mid x \in C \land \neg(x \in A \lor x \in B) \} \\ & = \{ x \mid x \in C \land (x \not\in A \land x \not\in B) \} \\ & = \{ x \mid (x \in C \land x \not\in A) \land (x \in C \land x \not\in B) \} \\ & = \{ x \mid x \in (C - A) \land x \in (C - B) \} \\ & = (C - A) \cap (C - B). \end{align*} \paragraph{(ii)}% By definition of the union, intersection, and relative complements of sets, \begin{align*} C - (A \cap B) & = \{ x \mid x \in C \land x \not\in A \cap B \} \\ & = \{ x \mid x \in C \land x \not\in \{ y \mid y \in A \land y \in B \}\} \\ & = \{ x \mid x \in C \land \neg(x \in A \land x \in B) \} \\ & = \{ x \mid x \in C \land (x \not\in A \lor x \not\in B) \} \\ & = \{ x \mid (x \in C \land x \not\in A) \lor (x \in C \land x \not\in B) \} \\ & = \{ x \mid x \in (C - A) \lor x \in (C - B) \} \\ & = (C - A) \cup (C - B). \end{align*} \end{proof} \subsection{\verified{% Identities Involving \texorpdfstring{$\emptyset$}{the Empty Set}}}% \label{sub:identitives-involving-empty-set} For any set $A$, \begin{align*} A \cup \emptyset & = A \\ A \cap \emptyset & = \emptyset \\ A \cap (C - A) & = \emptyset \end{align*} \begin{proof} \statementpadding \lean*{Mathlib/Data/Set/Basic}{Set.union\_empty} \lean*{Mathlib/Data/Set/Basic}{Set.inter\_empty} \lean{Mathlib/Data/Set/Basic}{Set.inter\_diff\_self} Let $A$ be an arbitrary set. We prove (i) that $A \cup \emptyset = A$, (ii) $A \cap \emptyset = \emptyset$, and (iii) $A \cap (C - A) = \emptyset$. \paragraph{(i)}% By definition of the emptyset and union of sets, \begin{align*} A \cup \emptyset & = \{ x \mid x \in A \lor x \in \emptyset \} \\ & = \{ x \mid x \in A \lor F \} \\ & = \{ x \mid x \in A \} \\ & = A. \end{align*} \paragraph{(ii)}% By definition of the emptyset and intersection of sets, \begin{align*} A \cap \emptyset & = \{ x \mid x \in A \land x \in \emptyset \} \\ & = \{ x \mid x \in A \land F \} \\ & = \{ x \mid F \} \\ & = \{ x \mid x \neq x \} \\ & = \emptyset. \end{align*} \paragraph{(iii)}% By definition of the emptyset, and the intersection and relative complement of sets, \begin{align*} A \cap (C - A) & = \{ x \mid x \in A \land x \in C - A \} \\ & = \{ x \mid x \in A \land x \in \{ y \mid y \in C \land y \not\in A \}\} \\ & = \{ x \mid x \in A \land (x \in C \land x \not\in A) \} \\ & = \{ x \mid x \in C \land F \} \\ & = \{ x \mid F \} \\ & = \{ x \mid x \neq x \} \\ & = \emptyset. \end{align*} \end{proof} \subsection{\unverified{Monotonicity}}% \label{sub:monotonicity} For any sets $A$, $B$, and $C$, \begin{align*} A \subseteq B & \Rightarrow A \cup C \subseteq B \cup C \\ A \subseteq B & \Rightarrow A \cap C \subseteq B \cap C \\ A \subseteq B & \Rightarrow \bigcup A \subseteq \bigcup B \end{align*} \begin{proof} TODO \end{proof} \subsection{\unverified{Anti-monotonicity}}% \label{sub:anti-monotonicity} For any sets $A$, $B$, and $C$, \begin{align*} A \subseteq B & \Rightarrow C - B \subseteq C - A \\ \emptyset \neq A \subseteq B & \Rightarrow \bigcap B \subseteq \bigcap A. \end{align*} \begin{proof} TODO \end{proof} \subsection{\unverified{General Distributive Laws}}% \label{sub:general-distributive-laws} For any sets $A$ and $\mathscr{B}$, \begin{align*} A \cup \bigcap \mathscr{B} & = \bigcap\; \{ A \cup X \mid X \in \mathscr{B} \} \quad\text{for}\quad \mathscr{B} \neq \emptyset \\ A \cap \bigcup \mathscr{B} & = \bigcup\; \{ A \cap X \mid X \in \mathscr{B} \} \end{align*} \begin{proof} TODO \end{proof} \subsection{\unverified{General De Morgan's Laws}}% \label{sub:general-de-morgans-laws} For any set $C$ and $\mathscr{A} \neq \emptyset$, \begin{align*} C - \bigcup \mathscr{A} & = \bigcap\; \{ C - X \mid X \in \mathscr{A} \} \\ C - \bigcap \mathscr{A} & = \bigcup\; \{ C - X \mid X \in \mathscr{A} \} \end{align*} \begin{proof} TODO \end{proof} \section{Exercises 4}% \label{sec:exercises-4} \subsection{\unverified{Exercise 4.11}}% \label{sub:exercise-4.11} Show that for any sets $A$ and $B$, $$A = (A \cap B) \cup (A - B) \quad\text{and}\quad A \cup (B - A) = A \cup B.$$ \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.12}}% \label{sub:exercise-4.12} Verify the following identity (one of De Morgan's laws): $$C - (A \cap B) = (C - A) \cup (C - B).$$ \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.13}}% \label{sub:exercise-4.13} Show that if $A \subseteq B$, then $C - B \subseteq C - A$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.14}}% \label{sub:exercise-4.14} Show by example that for some sets $A$, $B$, and $C$, the set $A - (B - C)$ is different from $(A - B) - C$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.15}}% \label{sub:exercise-4.15} Define the symmetric difference $A + B$ of sets $A$ and $B$ to be the set $(A - B) \cup (B - A)$. \subsubsection{\unverified{Exercise 4.15a}}% \label{ssub:exercise-4.15a} Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$. \begin{proof} TODO \end{proof} \subsubsection{\unverified{Exercise 4.15b}}% \label{ssub:exercise-4.15b} Show that $A + (B + C) = (A + B) + C$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.16}}% \label{sub:exercise-4.16} Simplify: $$[(A \cup B \cup C) \cap (A \cup B)] - [(A \cup (B - C)) \cap A].$$ \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.17}}% \label{sub:exercise-4.17} Show that the following four conditions are equivalent. \begin{enumerate}[(a)] \item $A \subseteq B$, \item $A - B = \emptyset$, \item $A \cup B = B$, \item $A \cap B = A$. \end{enumerate} \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.18}}% \label{sub:exercise-4.18} Assume that $A$ and $B$ are subsets of $S$. List all of the different sets that can be made from these three by use of the binary operations $\cup$, $\cap$, and $-$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.19}}% \label{sub:exercise-4.19} Is $\powerset{(A - B)}$ always equal to $\powerset{A} - \powerset{B}$? Is it ever equal to $\powerset{A} - \powerset{B}$? \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.20}}% \label{sub:exercise-4.20} Let $A$, $B$, and $C$ be sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that $B = C$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.21}}% \label{sub:exercise-4.21} Show that $\bigcup (A \cup B) = \bigcup A \cup \bigcup B$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.22}}% \label{sub:exercise-4.22} Show that if $A$ and $B$ are nonempty sets, then $\bigcap (A \cup B) = \bigcap A \cap \bigcap B$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.23}}% \label{sub:exercise-4.23} Show that if $\mathscr{B}$ is nonempty, then $A \cup \bigcap \mathscr{B} = \bigcap\; \{A \cup X \mid X \in \mathscr{B} \}$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.24a}}% \label{sub:exercise-4.24a} Show that if $\mathscr{A}$ is nonempty, then $\powerset{\bigcap A} = \bigcap\; \{\powerset{X} \mid X \in \mathscr{A} \}$. \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.24b}}% \label{sub:exercise-4.24b} Show that $$\bigcup\; \{ \powerset{X} \mid X \in \mathscr{A} \} \subseteq \powerset{\bigcup A}.$$ Under what conditions does equality hold? \begin{proof} TODO \end{proof} \subsection{\unverified{Exercise 4.25}}% \label{sub:exercise-4.25} Is $A \cup \bigcup \mathscr{B}$ always the same as $\bigcup\; \{ A \cup X \mid X \in \mathscr{B} \}$? If not, then under what conditions does equality hold? \begin{proof} TODO \end{proof} \end{document}