import Mathlib.Data.Set.Basic import Common.Logic.Basic import Common.Set.Basic namespace Set /-- Kazimierz Kuratowski's definition of an ordered pair. Like `Set`, this is a homogeneous structure. -/ def OrderedPair (x y : α) : Set (Set α) := {{x}, {x, y}} namespace OrderedPair /-- For any sets `x`, `y`, `u`, and `v`, `⟨u, v⟩ = ⟨x, y⟩` **iff** `u = x ∧ v = y`. -/ theorem ext_iff : (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by unfold OrderedPair apply Iff.intro · intro h have h' := h rw [Set.ext_iff] at h' have hu := h' {u} have huv := h' {u, v} simp only [mem_singleton_iff, mem_insert_iff, true_or, iff_true] at hu simp only [mem_singleton_iff, mem_insert_iff, or_true, iff_true] at huv apply Or.elim hu · apply Or.elim huv · -- #### Case 1 -- `{u} = {x}` and `{u, v} = {x}`. intro huv_x hu_x rw [singleton_eq_singleton_iff] at hu_x rw [hu_x] at huv_x have hx_v := pair_eq_singleton_mem_imp_eq_self huv_x rw [hu_x, hx_v] at h simp only [mem_singleton_iff, insert_eq_of_mem] at h have := pair_eq_singleton_mem_imp_eq_self $ pair_eq_singleton_mem_imp_eq_self h rw [← hx_v] at this exact ⟨hu_x.symm, this⟩ · -- #### Case 2 -- `{u} = {x}` and `{u, v} = {x, y}`. intro huv_xy hu_x rw [singleton_eq_singleton_iff] at hu_x rw [hu_x] at huv_xy by_cases hx_v : x = v · rw [hx_v] at huv_xy simp at huv_xy have := pair_eq_singleton_mem_imp_eq_self huv_xy.symm exact ⟨hu_x.symm, this⟩ · rw [Set.ext_iff] at huv_xy have := huv_xy v simp at this apply Or.elim this · intro hv_x rw [hu_x, ← hv_x] at h simp at h have := pair_eq_singleton_mem_imp_eq_self $ pair_eq_singleton_mem_imp_eq_self h exact ⟨hu_x.symm, this⟩ · intro hv_y exact ⟨hu_x.symm, hv_y.symm⟩ · apply Or.elim huv · -- #### Case 3 -- `{u} = {x, y}` and `{u, v} = {x}`. intro huv_x hu_xy rw [Set.ext_iff] at huv_x have hu_x := huv_x u have hv_x := huv_x v simp only [mem_singleton_iff, mem_insert_iff, true_or, true_iff] at hu_x simp only [mem_singleton_iff, mem_insert_iff, or_true, true_iff] at hv_x rw [← hu_x] at hu_xy have := pair_eq_singleton_mem_imp_eq_self hu_xy.symm rw [hu_x, ← hv_x] at this exact ⟨hu_x.symm, this⟩ · -- #### Case 4 -- `{u} = {x, y}` and `{u, v} = {x, y}`. intro huv_xy hu_xy rw [Set.ext_iff] at hu_xy have hx_u := hu_xy x have hy_u := hu_xy y simp only [mem_singleton_iff, mem_insert_iff, true_or, iff_true] at hx_u simp only [mem_singleton_iff, mem_insert_iff, or_true, iff_true] at hy_u rw [hx_u, hy_u] at huv_xy simp only [mem_singleton_iff, insert_eq_of_mem] at huv_xy have := pair_eq_singleton_mem_imp_eq_self huv_xy rw [← this] at hy_u exact ⟨hx_u, hy_u⟩ · intro h rw [h.left, h.right] end OrderedPair end Set