\documentclass{article} \input{../../preamble} \newcommand{\link}[1]{\lean{../..} {Bookshelf/Apostol/Chapter\_I\_3} {Apostol.Chapter\_I\_3.#1} {Chapter\_I\_3.#1} } \begin{document} \header{A Set of Axioms for the Real-Number System}{Tom M. Apostol} \section*{\proceeding{Theorem I.27}}% \hyperlabel{sec:theorem-i.27}% Every nonempty set $S$ that is bounded below has a greatest lower bound; that is, there is a real number $L$ such that $L = \inf{S}$. \begin{proof} \link{exists\_isGLB} \end{proof} \section*{\proceeding{Theorem I.29}}% \hyperlabel{sec:theorem-i.29} For every real $x$ there exists a positive integer $n$ such that $n > x$. \begin{proof} \link{exists\_pnat\_geq\_self} \end{proof} \section*{\proceeding{Theorem I.30}}% \hyperlabel{sec:theorem-i.30}% If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$. \note{This is known as the "Archimedean Property of the Reals."} \begin{proof} \link{exists\_pnat\_mul\_self\_geq\_of\_pos} \end{proof} \section*{\proceeding{Theorem I.31}}% \hyperlabel{sec:theorem-i.31}% If three real numbers $a$, $x$, and $y$ satisfy the inequalities $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then $x = a$. \begin{proof} \link{forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq} \end{proof} \section*{\proceeding{Theorem I.32}}% \hyperlabel{sec:theorem-i.32}% Let $h$ be a given positive number and let $S$ be a set of real numbers. \begin{enumerate}[(a)] \item If $S$ has a supremum, then for some $x$ in $S$ we have $$x > \sup{S} - h.$$ \item If $S$ has an infimum, then for some $x$ in $S$ we have $$x < \inf{S} + h.$$ \end{enumerate} \begin{proof} \ % Force space prior to *Proof.* \begin{enumerate}[(a)] \item \link{sup\_imp\_exists\_gt\_sup\_sub\_delta} \item \link{inf\_imp\_exists\_lt\_inf\_add\_delta} \end{enumerate} \end{proof} \section*{\proceeding{Theorem I.33}}% \hyperlabel{sec:theorem-i.33}% Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set $$C = \{a + b : a \in A, b \in B\}.$$ \begin{enumerate}[(a)] \item If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and $$\sup{C} = \sup{A} + \sup{B}.$$ \item If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and $$\inf{C} = \inf{A} + \inf{B}.$$ \end{enumerate} \note{This is known as the "Additive Property."} \begin{proof} \ % Force space prior to *Proof.* \begin{enumerate}[(a)] \item \link{sup\_minkowski\_sum\_eq\_sup\_add\_sup} \item \link{inf\_minkowski\_sum\_eq\_inf\_add\_inf} \end{enumerate} \end{proof} \section*{\proceeding{Theorem I.34}}% \hyperlabel{sec:theorem-i.34}% Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ has an infimum, and they satisfy the inequality $$\sup{S} \leq \inf{T}.$$ \begin{proof} \link{forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf} \end{proof} \end{document}