import Mathlib.Data.PNat.Basic import Mathlib.Data.Real.Basic #check Archimedean namespace Real /-- Every real should be less than or equal to the absolute value of its ceiling. -/ lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by by_cases h : x ≥ 0 · let k : ℤ := ⌈x⌉ unfold Int.natAbs have k' : k = ⌈x⌉ := rfl rw [←k'] have _ : k ≥ 0 := by -- Hint for match below rw [k', ge_iff_le] exact Int.ceil_nonneg (ge_iff_le.mp h) match k with | Int.ofNat m => calc x _ ≤ ⌈x⌉ := Int.le_ceil x _ = Int.ofNat m := by rw [←k'] · have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp calc x _ ≤ 0 := le_of_lt (lt_of_not_le h) _ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h' /-- Theorem 1.29 For every real `x` there exists a positive integer `n` such that `n > x`. -/ theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩ have h : x < x' := calc x _ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x _ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp _ = x' := rfl exact ⟨x', h⟩ /-- Theorem 1.30 If `x > 0` and if `y` is an arbitrary real number, there exists a positive integer `n` such that `nx > y`. This is known as the *Archimedean Property of the Reals*. -/ theorem pos_imp_exists_pnat_mul_self_geq {x y : ℝ} : x > 0 → ∃ n : ℕ+, n * x > y := by intro hx let ⟨n, p⟩ := exists_pnat_geq_self (y / x) have p' := mul_lt_mul_of_pos_right p hx rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p' exact ⟨n, p'⟩ end Real