\documentclass{article} \usepackage[shortlabels]{enumitem} \input{../../shared/preamble} \begin{document} \begin{xtheorem}{I.27} Every nonempty set $S$ that is bounded below has a greatest lower bound; that is, there is a real number $L$ such that $L = \inf{S}$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB} \end{proof} \begin{xtheorem}{I.29} For every real $x$ there exists a positive integer $n$ such that $n > x$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self} \end{proof} \begin{xtheorem}{I.30}[Archimedean Property of the Reals] If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos} \end{proof} \begin{xtheorem}{I.31} If three real numbers $a$, $x$, and $y$ satisfy the inequalities $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then $x = a$. \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq} \end{proof} \begin{xtheorem}{I.32} Let $h$ be a given positive number and let $S$ be a set of real numbers. \begin{enumerate}[(a)] \item If $S$ has a supremum, then for some $x$ in $S$ we have $$x > \sup{S} - h.$$ \item If $S$ has an infimum, then for some $x$ in $S$ we have $$x < \inf{S} + h.$$ \end{enumerate} \end{xtheorem} \begin{proof} \ % Force space prior to *Proof.* \begin{enumerate}[(a)] \item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.sup_imp_exists_gt_sup_sub_delta} \item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.inf_imp_exists_lt_inf_add_delta} \end{enumerate} \end{proof} \begin{xtheorem}{I.33}[Additive Property] Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set $$C = \{a + b : a \in A, b \in B\}.$$ \begin{enumerate}[(a)] \item If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and $$\sup{C} = \sup{A} + \sup{B}.$$ \item If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and $$\inf{C} = \inf{A} + \inf{B}.$$ \end{enumerate} \end{xtheorem} \begin{proof} \ % Force space prior to *Proof.* \begin{enumerate}[(a)] \item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.sup_minkowski_sum_eq_sup_add_sup} \item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.inf_minkowski_sum_eq_inf_add_inf} \end{enumerate} \end{proof} \begin{xtheorem}{I.34} Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ has an infimum, and they satisfy the inequality $$\sup{S} \leq \inf{T}.$$ \end{xtheorem} \begin{proof} \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_mem_le_forall_mem_imp_sup_le_inf} \end{proof} \end{document}