\documentclass{article} \input{../../preamble} \makecode{../..} \begin{document} \header{Sequences}{} \tableofcontents \section{Summations}% \hyperlabel{sec:summations} \subsection{\verified{Arithmetic Series}}% \hyperlabel{sub:sum-arithmetic-series} Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. Then for some $n \in \mathbb{N}$, \begin{equation} \hyperlabel{sub:sum-arithmetic-series-eq1} \sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}. \end{equation} \code{Common/Real/Sequence/Arithmetic} {Real.Arithmetic.sum\_recursive\_closed} \begin{proof} Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. By definition, for all $k \in \mathbb{N}$, \begin{equation} \hyperlabel{sub:sum-arithmetic-series-eq2} a_k = (a_0 + kd). \end{equation} Define predicate $P(n)$ as "identity \eqref{sub:sum-arithmetic-series-eq1} holds for value $n$." We use induction to prove $P(n)$ holds for all $n \geq 0$. \paragraph{Base Case}% Let $k = 0$. Then $$\sum_{i=0}^k a_i = a_0 = \frac{2a_0}{2} = \frac{(k + 1)(a_0 + a_k)}{2}.$$ Therefore $P(0)$ holds. \paragraph{Induction Step}% Assume induction hypothesis $P(k)$ holds for some $k \geq 0$. Then \begin{align*} \sum_{i=0}^{k+1} a_i & = \sum_{i=0}^k a_i + a_{k+1} \\ & = \frac{(k + 1)(a_0 + a_k)}{2} + a_{k+1} & \text{induction hypothesis} \\ & = \frac{(k + 1)(a_0 + (a_0 + kd))}{2} + (a_0 + (k + 1)d) & \eqref{sub:sum-arithmetic-series-eq2} \\ & = \frac{(k + 1)(2a_0 + kd)}{2} + (a_0 + (k + 1)d) \\ & = \frac{(k + 1)(2a_0 + kd) + 2a_0 + 2(k + 1)d}{2} \\ & = \frac{2ka_0 + k^2d + 4a_0 + kd + 2kd + 2d}{2} \\ & = \frac{(k + 2)(2a_0 + kd + d)}{2} \\ & = \frac{(k + 2)(a_0 + a_0 + (k + 1)d)}{2} \\ & = \frac{(k + 2)(a_0 + a_{k+1})}{2} & \eqref{sub:sum-arithmetic-series-eq2} \\ & = \frac{((k + 1) + 1)(a_0 + a_{k+1})}{2}. \end{align*} Thus $P(k)$ implies $P(k + 1)$ holds true. \paragraph{Conclusion}% By mathematical induction, it follows for all $n \geq 0$, $P(n)$ is true. \end{proof} \subsection{\verified{Geometric Series}}% \hyperlabel{sub:sum-geometric-series} Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. Then for some $n \in \mathbb{N}$, \begin{equation} \hyperlabel{sub:sum-geometric-series-eq1} \sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}. \end{equation} \code{Common/Real/Sequence/Geometric} {Real.Geometric.sum\_recursive\_closed} \begin{proof} Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. By definition, for all $k \in \mathbb{N}$, \begin{equation} \hyperlabel{sub:sum-geometric-series-eq2} a_k = a_0r^k. \end{equation} Define predicate $P(n)$ as "identity \eqref{sub:sum-geometric-series-eq1} holds for value $n$." We use induction to prove $P(n)$ holds for all $n \geq 0$. \paragraph{Base Case}% Let $k = 0$. Then $$\sum_{i=0}^k a_i = a_0 = \frac{a_0(1 - r)}{1 - r} = \frac{a_0(1 - r^{k+1})}{1 - r}$$ Therefore $P(0)$ holds. \paragraph{Induction Step}% Assume induction hypothesis $P(k)$ holds for some $k \geq 0$. Then \begin{align*} \sum_{i=0}^{k+1} a_i & = \sum_{i=0}^k a_i + a_{k+1} \\ & = \frac{a_0(1 - r^{k+1})}{1 - r} + a_{k + 1} & \text{induction hypothesis} \\ & = \frac{a_0(1 - r^{k+1})}{1 - r} + a_0r^{k + 1} & \eqref{sub:sum-geometric-series-eq2} \\ & = \frac{a_0(1 - r^{k+1}) + a_0r^{k+1}(1 - r)}{1 - r} \\ & = \frac{a_0(1 - r^{k+1} + r^{k+1}(1 - r))}{1 - r} \\ & = \frac{a_0(1 - r^{k+1} + r^{k+1} - r^{k+2})}{1 - r} \\ & = \frac{a_0(1 - r^{k+2})}{1 - r} \\ & = \frac{a_0(1 - r^{(k + 1) + 1})}{1 - r}. \end{align*} Thus $P(k)$ implies $P(k + 1)$ holds true. \paragraph{Conclusion}% By mathematical induction, it follows for all $n \geq 0$, $P(n)$ is true. \end{proof} \end{document}