/-! # Avigad.Chapter4 Quantifiers and Equality -/ /-! #### Exercise 1 Prove these equivalences. You should also try to understand why the reverse implication is not derivable in the last example. -/ namespace Avigad.Chapter4 namespace ex1 variable (α : Type _) variable (p q : α → Prop) theorem forall_and : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := Iff.intro (fun h => ⟨fun x => And.left (h x), fun x => And.right (h x)⟩) (fun ⟨h₁, h₂⟩ x => ⟨h₁ x, h₂ x⟩) theorem forall_imp_distrib : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := fun h₁ h₂ x => have px : p x := h₂ x h₁ x px theorem forall_or_distrib : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := fun h₁ x => h₁.elim (fun h₂ => Or.inl (h₂ x)) (fun h₂ => Or.inr (h₂ x)) -- The implication in the above example cannot be proven in the other direction -- because it may be the case predicate `p x` holds for certain values of `x` -- but not others that `q x` may hold for (and vice versa). end ex1 /-! ### Exercise 2 It is often possible to bring a component of a formula outside a universal quantifier, when it does not depend on the quantified variable. Try proving these (one direction of the second of these requires classical logic). -/ namespace ex2 variable (α : Type _) variable (p q : α → Prop) variable (r : Prop) theorem self_imp_forall : α → ((∀ _ : α, r) ↔ r) := fun a => Iff.intro (fun h => h a) (fun hr _ => hr) section open Classical theorem forall_or_right : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r := Iff.intro (fun h₁ => (em r).elim Or.inr (fun nr => Or.inl (fun x => (h₁ x).elim id (absurd · nr)))) (fun h₁ => h₁.elim (fun h₂ x => Or.inl (h₂ x)) (fun hr _ => Or.inr hr)) end theorem forall_swap : (∀ x, r → p x) ↔ (r → ∀ x, p x) := Iff.intro (fun h hr hx => h hx hr) (fun h hx hr => h hr hx) end ex2 /-! ### Exercise 3 Consider the "barber paradox," that is, the claim that in a certain town there is a (male) barber that shaves all and only the men who do not shave themselves. Prove that this is a contradiction. -/ namespace ex3 open Classical variable (men : Type _) variable (barber : men) variable (shaves : men → men → Prop) theorem barber_paradox (h : ∀ x : men, shaves barber x ↔ ¬shaves x x) : False := have b : shaves barber barber ↔ ¬shaves barber barber := h barber (em (shaves barber barber)).elim (fun b' => absurd b' (Iff.mp b b')) (fun b' => absurd (Iff.mpr b b') b') end ex3 /-! ### Exercise 4 Remember that, without any parameters, an expression of type `Prop` is just an assertion. Fill in the definitions of `prime` and `Fermat_prime` below, and construct each of the given assertions. For example, you can say that there are infinitely many primes by asserting that for every natural number `n`, there is a prime number greater than `n.` Goldbach’s weak conjecture states that every odd number greater than `5` is the sum of three primes. Look up the definition of a Fermat prime or any of the other statements, if necessary. -/ namespace ex4 def even (a : Nat) := ∃ b, a = 2 * b def odd (a : Nat) := ¬even a def prime (n : Nat) : Prop := n > 1 ∧ ∀ (m : Nat), (1 < m ∧ m < n) → n % m ≠ 0 def infinitelyManyPrimes : Prop := ∀ (n : Nat), (∃ (m : Nat), m > n ∧ prime m) def FermatPrime (n : Nat) : Prop := ∃ (m : Nat), n = 2^(2^m) + 1 def infinitelyManyFermatPrimes : Prop := ∀ (n : Nat), (∃ (m : Nat), m > n ∧ FermatPrime m) def GoldbachConjecture : Prop := ∀ (n : Nat), even n ∧ n > 2 → ∃ (x y : Nat), prime x ∧ prime y ∧ x + y = n def Goldbach'sWeakConjecture : Prop := ∀ (n : Nat), odd n ∧ n > 5 → ∃ (x y z : Nat), prime x ∧ prime y ∧ prime z ∧ x + y + z = n def Fermat'sLastTheorem : Prop := ∀ (n : Nat), n > 2 → (∀ (a b c : Nat), a^n + b^n ≠ c^n) end ex4 /-! ### Exercise 5 Prove as many of the identities listed in Section 4.4 as you can. -/ namespace ex5 open Classical variable (α : Type _) variable (p q : α → Prop) variable (r s : Prop) theorem exists_imp : (∃ _ : α, r) → r := fun ⟨_, hr⟩ => hr theorem exists_intro (a : α) : r → (∃ _ : α, r) := fun hr => ⟨a, hr⟩ theorem exists_and_right : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := Iff.intro (fun ⟨hx, ⟨hp, hr⟩⟩ => ⟨⟨hx, hp⟩, hr⟩) (fun ⟨⟨hx, hp⟩, hr⟩ => ⟨hx, ⟨hp, hr⟩⟩) theorem exists_or : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := Iff.intro (fun ⟨hx, hpq⟩ => hpq.elim (fun hp => Or.inl ⟨hx, hp⟩) (fun hq => Or.inr ⟨hx, hq⟩)) (fun h => h.elim (fun ⟨hx, hp⟩ => ⟨hx, Or.inl hp⟩) (fun ⟨hx, hq⟩ => ⟨hx, Or.inr hq⟩)) theorem forall_iff_not_exists : (∀ x, p x) ↔ ¬(∃ x, ¬p x) := Iff.intro (fun h ⟨hx, np⟩ => np (h hx)) (fun h hx => byContradiction fun np => h ⟨hx, np⟩) theorem exists_iff_not_forall : (∃ x, p x) ↔ ¬(∀ x, ¬p x) := Iff.intro (fun ⟨hx, hp⟩ h => absurd hp (h hx)) (fun h => byContradiction fun h' => h (fun (x : α) hp => h' ⟨x, hp⟩)) theorem not_exists : (¬∃ x, p x) ↔ (∀ x, ¬p x) := Iff.intro (fun h hx hp => h ⟨hx, hp⟩) (fun h ⟨hx, hp⟩ => absurd hp (h hx)) theorem forall_negation : (¬∀ x, p x) ↔ (∃ x, ¬p x) := Iff.intro (fun h => byContradiction fun h' => h (fun (x : α) => byContradiction fun np => h' ⟨x, np⟩)) (fun ⟨hx, np⟩ h => absurd (h hx) np) theorem not_forall : (¬∀ x, p x) ↔ (∃ x, ¬p x) := forall_negation α p theorem forall_iff_exists_imp : (∀ x, p x → r) ↔ (∃ x, p x) → r := Iff.intro (fun h ⟨hx, hp⟩ => h hx hp) (fun h hx hp => h ⟨hx, hp⟩) theorem exists_iff_forall_imp (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := Iff.intro (fun ⟨hx, hp⟩ h => hp (h hx)) (fun h₁ => (em (∀ x, p x)).elim (fun h₂ => ⟨a, fun _ => h₁ h₂⟩) (fun h₂ => have h₃ : (∃ x, ¬p x) := Iff.mp (forall_negation α p) h₂ match h₃ with | ⟨hx, hp⟩ => ⟨hx, fun hp' => absurd hp' hp⟩)) theorem exists_self_iff_self_exists (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) := Iff.intro (fun ⟨hx, hrp⟩ hr => ⟨hx, hrp hr⟩) (fun h => (em r).elim (fun hr => match h hr with | ⟨hx, hp⟩ => ⟨hx, fun _ => hp⟩) (fun nr => ⟨a, fun hr => absurd hr nr⟩)) end ex5 /-! ### Exercise 6 Give a calculational proof of the theorem `log_mul` below. -/ namespace ex6 variable (log exp : Float → Float) variable (log_exp_eq : ∀ x, log (exp x) = x) variable (exp_log_eq : ∀ {x}, x > 0 → exp (log x) = x) variable (exp_pos : ∀ x, exp x > 0) variable (exp_add : ∀ x y, exp (x + y) = exp x * exp y) theorem exp_add_mul_exp (x y z : Float) : exp (x + y + z) = exp x * exp y * exp z := by rw [exp_add, exp_add] theorem exp_log_eq_self (y : Float) (h : y > 0) : exp (log y) = y := exp_log_eq h theorem log_mul {x y : Float} (hx : x > 0) (hy : y > 0) : log (x * y) = log x + log y := calc log (x * y) _ = log (x * exp (log y)) := by rw [exp_log_eq hy] _ = log (exp (log x) * exp (log y)) := by rw [exp_log_eq hx] _ = log (exp (log x + log y)) := by rw [exp_add] _ = log x + log y := by rw [log_exp_eq] end ex6 end Avigad.Chapter4