Rename `Exercises` to `Bookshelf`.
parent
b0a30ed4b4
commit
fe6cb7e074
|
@ -0,0 +1,4 @@
|
|||
import Bookshelf.Apostol
|
||||
import Bookshelf.Avigad
|
||||
import Bookshelf.Enderton
|
||||
import Bookshelf.Fraleigh
|
|
@ -0,0 +1,2 @@
|
|||
import Bookshelf.Apostol.Chapter_I_03
|
||||
import Bookshelf.Apostol.Chapter_1_11
|
|
@ -2,9 +2,9 @@ import Mathlib.Data.Real.Basic
|
|||
|
||||
import Common.Real.Int
|
||||
|
||||
/-! # Exercises.Apostol.Exercises_1_11 -/
|
||||
/-! # Apostol.Chapter_1_11 -/
|
||||
|
||||
namespace Exercises.Apostol.Exercises_1_11
|
||||
namespace Apostol.Chapter_1_11
|
||||
|
||||
/-! ## Exercise 4
|
||||
|
||||
|
@ -73,4 +73,4 @@ Exercises 4(a) and (b) to the bracket on the right.
|
|||
-/
|
||||
theorem exercise_7b : True := sorry
|
||||
|
||||
end Exercises.Apostol.Exercises_1_11
|
||||
end Apostol.Chapter_1_11
|
|
@ -5,9 +5,9 @@
|
|||
\input{../../preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Exercises/Apostol/Exercises\_1\_11}
|
||||
{Exercises.Apostol.Exercises\_1\_11.#1}
|
||||
{Exercises\_1\_11.#1}
|
||||
{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.#1}
|
||||
{Chapter\_1\_11.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
|
@ -1,11 +1,11 @@
|
|||
import Common.Real.Set
|
||||
|
||||
/-! # Exercises.Apostol.Chapter_I_3
|
||||
/-! # Apostol.Chapter_I_3
|
||||
|
||||
A Set of Axioms for the Real-Number System
|
||||
-/
|
||||
|
||||
namespace Exercises.Apostol.Chapter_I_3
|
||||
namespace Apostol.Chapter_I_3
|
||||
|
||||
#check Archimedean
|
||||
#check Real.exists_isLUB
|
||||
|
@ -640,4 +640,4 @@ the Archimedean property does not imply the least-upper-bound axiom.
|
|||
###### TODO
|
||||
-/
|
||||
|
||||
end Exercises.Apostol.Chapter_I_3
|
||||
end Apostol.Chapter_I_3
|
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 8.9 KiB After Width: | Height: | Size: 8.9 KiB |
|
@ -0,0 +1,6 @@
|
|||
import Bookshelf.Avigad.Chapter2
|
||||
import Bookshelf.Avigad.Chapter3
|
||||
import Bookshelf.Avigad.Chapter4
|
||||
import Bookshelf.Avigad.Chapter5
|
||||
import Bookshelf.Avigad.Chapter7
|
||||
import Bookshelf.Avigad.Chapter8
|
|
@ -1,4 +1,4 @@
|
|||
/-! # Exercises.Avigad.Chapter2
|
||||
/-! # Avigad.Chapter2
|
||||
|
||||
Dependent Type Theory
|
||||
-/
|
||||
|
@ -8,7 +8,7 @@ Dependent Type Theory
|
|||
Define the function `Do_Twice`, as described in Section 2.4.
|
||||
-/
|
||||
|
||||
namespace Exercises.Avigad.Chapter2
|
||||
namespace Avigad.Chapter2
|
||||
|
||||
namespace ex1
|
||||
|
||||
|
@ -106,4 +106,4 @@ variable (d : ex3.vec Prop 3)
|
|||
|
||||
end ex4
|
||||
|
||||
end Exercises.Avigad.Chapter2
|
||||
end Avigad.Chapter2
|
|
@ -1,4 +1,4 @@
|
|||
/-! # Exercises.Avigad.Chapter3
|
||||
/-! # Avigad.Chapter3
|
||||
|
||||
Propositions and Proofs
|
||||
-/
|
||||
|
@ -8,7 +8,7 @@ Propositions and Proofs
|
|||
Prove the following identities.
|
||||
-/
|
||||
|
||||
namespace Exercises.Avigad.Chapter3
|
||||
namespace Avigad.Chapter3
|
||||
|
||||
namespace ex1
|
||||
|
||||
|
@ -164,4 +164,4 @@ theorem iff_not_self (hp : p) : ¬(p ↔ ¬p) :=
|
|||
|
||||
end ex3
|
||||
|
||||
end Exercises.Avigad.Chapter3
|
||||
end Avigad.Chapter3
|
|
@ -1,4 +1,4 @@
|
|||
/-! # Exercises.Avigad.Chapter4
|
||||
/-! # Avigad.Chapter4
|
||||
|
||||
Quantifiers and Equality
|
||||
-/
|
||||
|
@ -9,7 +9,7 @@ Prove these equivalences. You should also try to understand why the reverse
|
|||
implication is not derivable in the last example.
|
||||
-/
|
||||
|
||||
namespace Exercises.Avigad.Chapter4
|
||||
namespace Avigad.Chapter4
|
||||
|
||||
namespace ex1
|
||||
|
||||
|
@ -258,4 +258,4 @@ theorem log_mul {x y : Float} (hx : x > 0) (hy : y > 0) :
|
|||
|
||||
end ex6
|
||||
|
||||
end Exercises.Avigad.Chapter4
|
||||
end Avigad.Chapter4
|
|
@ -1,4 +1,4 @@
|
|||
/-! # Exercises.Avigad.Chapter5
|
||||
/-! # Avigad.Chapter5
|
||||
|
||||
Tactics
|
||||
-/
|
||||
|
@ -9,7 +9,7 @@ Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you can
|
|||
now with tactic proofs, using also `rw` and `simp` as appropriate.
|
||||
-/
|
||||
|
||||
namespace Exercises.Avigad.Chapter5
|
||||
namespace Avigad.Chapter5
|
||||
|
||||
namespace ex1
|
||||
|
||||
|
@ -461,4 +461,4 @@ theorem or_and_or_and_or (p q r : Prop) (hp : p)
|
|||
|
||||
end ex2
|
||||
|
||||
end Exercises.Avigad.Chapter5
|
||||
end Avigad.Chapter5
|
|
@ -1,9 +1,9 @@
|
|||
/-! # Exercises.Avigad.Chapter7
|
||||
/-! # Avigad.Chapter7
|
||||
|
||||
Inductive Types
|
||||
-/
|
||||
|
||||
namespace Exercises.Avigad.Chapter7
|
||||
namespace Avigad.Chapter7
|
||||
|
||||
/-! #### Exercise 1
|
||||
|
||||
|
@ -217,4 +217,4 @@ def eval_foo : Foo → List Nat → Nat
|
|||
|
||||
end ex3
|
||||
|
||||
end Exercises.Avigad.Chapter7
|
||||
end Avigad.Chapter7
|
|
@ -1,9 +1,9 @@
|
|||
/-! # Exercises.Avigad.Chapter8
|
||||
/-! # Avigad.Chapter8
|
||||
|
||||
Induction and Recursion
|
||||
-/
|
||||
|
||||
namespace Exercises.Avigad.Chapter8
|
||||
namespace Avigad.Chapter8
|
||||
|
||||
/-! #### Exercise 1
|
||||
|
||||
|
@ -206,4 +206,4 @@ theorem fuse_eq (v : Nat → Nat)
|
|||
|
||||
end ex5
|
||||
|
||||
end Exercises.Avigad.Chapter8
|
||||
end Avigad.Chapter8
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Enderton.Chapter0
|
|
@ -1,11 +1,11 @@
|
|||
import Common.LTuple.Basic
|
||||
|
||||
/-! # Exercises.Enderton.Chapter0
|
||||
/-! # Enderton.Chapter0
|
||||
|
||||
Useful Facts About Sets
|
||||
-/
|
||||
|
||||
namespace Exercises.Enderton.Chapter0
|
||||
namespace Enderton.Chapter0
|
||||
|
||||
/--
|
||||
The following describes a so-called "generic" tuple. Like an `LTuple`, a generic
|
||||
|
@ -275,4 +275,4 @@ theorem lemma_0a (xs : GTuple α (n, m - 1)) (ys : LTuple α (m + k))
|
|||
|
||||
end
|
||||
|
||||
end Exercises.Enderton.Chapter0
|
||||
end Enderton.Chapter0
|
|
@ -3,8 +3,8 @@
|
|||
\input{../../preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Exercises/Enderton/Chapter0}
|
||||
{Exercises.Enderton.Chapter0.#1}
|
||||
{Bookshelf/Enderton/Chapter0}
|
||||
{Enderton.Chapter0.#1}
|
||||
{Chapter0.#1}
|
||||
}
|
||||
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Fraleigh.Chapter1
|
|
@ -1,11 +1,11 @@
|
|||
import Mathlib.Data.Complex.Basic
|
||||
|
||||
/-! # Exercises.Fraleign.Chapter1
|
||||
/-! # Fraleign.Chapter1
|
||||
|
||||
Introduction and Examples
|
||||
-/
|
||||
|
||||
namespace Exercises.Fraleign.Chapter1
|
||||
namespace Fraleign.Chapter1
|
||||
|
||||
open Complex
|
||||
open HPow
|
||||
|
@ -21,4 +21,4 @@ theorem exercise1 : I^3 = 0 + (-1) * I := calc
|
|||
= I * (I * hPow I 1) := rfl
|
||||
_ = 0 + (-1) * I := by simp
|
||||
|
||||
end Exercises.Fraleign.Chapter1
|
||||
end Fraleign.Chapter1
|
|
@ -1,4 +0,0 @@
|
|||
import Exercises.Apostol
|
||||
import Exercises.Avigad
|
||||
import Exercises.Enderton
|
||||
import Exercises.Fraleigh
|
|
@ -1,2 +0,0 @@
|
|||
import Exercises.Apostol.Chapter_I_03
|
||||
import Exercises.Apostol.Chapter_1_11
|
|
@ -1,6 +0,0 @@
|
|||
import Exercises.Avigad.Chapter2
|
||||
import Exercises.Avigad.Chapter3
|
||||
import Exercises.Avigad.Chapter4
|
||||
import Exercises.Avigad.Chapter5
|
||||
import Exercises.Avigad.Chapter7
|
||||
import Exercises.Avigad.Chapter8
|
|
@ -1 +0,0 @@
|
|||
import Exercises.Enderton.Chapter0
|
|
@ -1 +0,0 @@
|
|||
import Exercises.Fraleigh.Chapter1
|
|
@ -16,7 +16,7 @@ require «doc-gen4» from git
|
|||
|
||||
@[default_target]
|
||||
lean_lib «Bookshelf» {
|
||||
roots := #[`Common, `Exercises]
|
||||
roots := #[`Bookshelf, `Common]
|
||||
}
|
||||
|
||||
/--
|
||||
|
|
Loading…
Reference in New Issue