Enderton. Move Kuratowski's definition of an ordered pair into chapter; not

likely to be used outside this book.
finite-set-exercises
Joshua Potter 2023-06-10 16:01:23 -06:00
parent 6d3a2d8ad0
commit f5d1fc546a
4 changed files with 189 additions and 122 deletions

View File

@ -2244,7 +2244,8 @@ If not, then under what conditions does equality hold?
\begin{proof}
\lean{Common/Set/OrderedPair}{Set.OrderedPair.ext\_iff}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.OrderedPair.ext\_iff}
Let $x$, $y$, $u$, and $v$ be arbitrary sets.
@ -2518,7 +2519,7 @@ Show that there is no set to which every ordered pair belongs.
\end{proof}
\subsection{\partial{Exercise 5.5a}}%
\subsection{\unverified{Exercise 5.5a}}%
\label{sub:exercise-5.5a}
Assume that $A$ and $B$ are given sets, and show that there exists a set $C$
@ -2581,32 +2582,54 @@ In other words, show that $\{\{x\} \times B \mid x \in A\}$ is a set.
\end{proof}
\subsection{\partial{Exercise 5.5b}}%
\subsection{\verified{Exercise 5.5b}}%
\label{sub:exercise-5.5b}
With $A$, $B$, and $C$ as above, show that $A \times B = \bigcup C$.
\begin{proof}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_5\_5b}
Let $A$ and $B$ be arbitrary sets.
We want to show that
\begin{equation}
\label{sub:exercise-5.5b-eq1}
A \times B = \bigcup\; \{\{x\} \times B \mid x \in A\}.
\end{equation}
Note that \nameref{sub:cartesian-product} and \nameref{sub:exercise-5.5a}
prove the left- and right-hand sides of \eqref{sub:exercise-5.5b-eq1} are
sets respectively.
Then
\begin{align*}
A \times B
& = \{ y \mid \exists x \in A, \exists b \in B, y = \left< x, b \right> \} \\
& = \{ y \mid \exists b \in B, \exists x \in A, y = \left< x, b \right> \} \\
& = \{ y \mid \exists b \in B, y \in \{ \left< x, b \right> \mid x \in A \} \} \\
& = \{ y \mid y \in \{ \left< x, b \right> \mid x \in A \land b \in B \} \} \\
& = \{ y \mid \exists z \in \{\{x\} \times B \mid x \in A \}, y \in z \} \\
& = \bigcup \{\{x\} \times B \mid x \in A \}.
\end{align*}
The left-hand side of \eqref{sub:exercise-5.5b-eq1} is a set by virtue of
\nameref{sub:cartesian-product}.
The right-hand side of \eqref{sub:exercise-5.5b-eq1} is a set by virtue of
\nameref{sub:exercise-5.5a}.
We prove the set on each side is a subset of the other.
\paragraph{($\subseteq$)}%
Let $c \in A \times B$.
Then there exists some $a \in A$ and $b \in B$ such that
$c = \left< a, b \right>$.
Thus $c \in \{a\} \times B$.
We also note $\{a\} \times B \in \{\{x\} \times B \mid x \in A\}$,
specifically when $x = a$.
Therefore, by the \nameref{ref:union-axiom},
$c \in \bigcup\;\{\{x\} \times B \mid x \in A\}$.
\paragraph{($\supseteq$)}%
Let $c \in \bigcup\; \{\{x\} \times B \mid x \in A\}$.
By the \nameref{ref:union-axiom}, there exists some
$b \in \{\{x\} \times B \mid x \in A\}$ such that $c \in b$.
Then there exists some $x \in A$ such that $b = \{x\} \times B$.
Therefore $c \in \{x\} \times B$.
But $x \in A$ meaning $c \in A \times B$ as well.
\paragraph{Conclusion}%
Since we have shown
$A \times B \subseteq \bigcup\; \{\{x\} \times B \mid x \in A\}$ and
$A \times B \supseteq \bigcup\; \{\{x\} \times B \mid x \in A\}$, it
follows \eqref{sub:exercise-5.5b-eq1} is a true identity.
\end{proof}

View File

@ -1,8 +1,7 @@
import Mathlib.Data.Set.Basic
import Mathlib.SetTheory.ZFC.Basic
import Common.Logic.Basic
import Common.Set.Basic
import Common.Set.OrderedPair
/-! # Enderton.Chapter_3
@ -11,13 +10,107 @@ Relations and Functions
namespace Enderton.Set.Chapter_3
/-! ## Ordered Pairs -/
/--
Kazimierz Kuratowski's definition of an ordered pair.
-/
def OrderedPair (x : α) (y : β) : Set (Set (α ⊕ β)) :=
{{Sum.inl x}, {Sum.inl x, Sum.inr y}}
namespace OrderedPair
/--
For any sets `x`, `y`, `u`, and `v`, `⟨u, v⟩ = ⟨x, y⟩` **iff** `u = x ∧ v = y`.
-/
theorem ext_iff {x u : α} {y v : β}
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
unfold OrderedPair
apply Iff.intro
· intro h
have hu := Set.ext_iff.mp h {Sum.inl u}
have huv := Set.ext_iff.mp h {Sum.inl u, Sum.inr v}
simp only [
Set.mem_singleton_iff,
Set.mem_insert_iff,
true_or,
iff_true
] at hu
simp only [
Set.mem_singleton_iff,
Set.mem_insert_iff,
or_true,
iff_true
] at huv
apply Or.elim hu
· apply Or.elim huv
· -- #### Case 1
-- `{u} = {x}` and `{u, v} = {x}`.
intro huv_x hu_x
rw [Set.singleton_eq_singleton_iff] at hu_x
rw [hu_x] at huv_x
have hx_v := Set.pair_eq_singleton_mem_imp_eq_self huv_x
rw [hu_x, hx_v] at h
simp only [Set.mem_singleton_iff, Set.insert_eq_of_mem] at h
have := Set.pair_eq_singleton_mem_imp_eq_self $
Set.pair_eq_singleton_mem_imp_eq_self h
rw [← hx_v] at this
injection hu_x with p
injection this with q
exact ⟨p.symm, q⟩
· -- #### Case 2
-- `{u} = {x}` and `{u, v} = {x, y}`.
intro huv_xy hu_x
rw [Set.singleton_eq_singleton_iff] at hu_x
rw [hu_x] at huv_xy
by_cases hx_v : Sum.inl x = Sum.inr v
· rw [hx_v] at huv_xy
simp at huv_xy
have := Set.pair_eq_singleton_mem_imp_eq_self huv_xy.symm
injection hu_x with p
injection this with q
exact ⟨p.symm, q⟩
· rw [Set.ext_iff] at huv_xy
have := huv_xy (Sum.inr v)
simp at this
injection hu_x with p
exact ⟨p.symm, this.symm⟩
· apply Or.elim huv
· -- #### Case 3
-- `{u} = {x, y}` and `{u, v} = {x}`.
intro huv_x _
rw [Set.ext_iff] at huv_x
have hv_x := huv_x (Sum.inr v)
simp only [
Set.mem_singleton_iff,
Set.mem_insert_iff,
or_true,
true_iff
] at hv_x
· -- #### Case 4
-- `{u} = {x, y}` and `{u, v} = {x, y}`.
intro _ hu_xy
rw [Set.ext_iff] at hu_xy
have hy_u := hu_xy (Sum.inr y)
simp only [
Set.mem_singleton_iff,
Set.mem_insert_iff,
or_true,
iff_true
] at hy_u
· intro h
rw [h.left, h.right]
end OrderedPair
/-- ### Theorem 3B
If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
-/
theorem theorem_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
: Set.OrderedPair x y ∈ 𝒫 𝒫 C := by
have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
theorem theorem_3b {C : Set (αα)} (hx : Sum.inl x ∈ C) (hy : Sum.inr y ∈ C)
: OrderedPair x y ∈ 𝒫 𝒫 C := by
have hxs : {Sum.inl x} ⊆ C := Set.singleton_subset_iff.mpr hx
have hxys : {Sum.inl x, Sum.inr y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
exact Set.mem_mem_imp_pair_subset hxs hxys
/-- ### Exercise 5.1
@ -25,7 +118,8 @@ theorem theorem_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
Suppose that we attempted to generalize the Kuratowski definitions of ordered
pairs to ordered triples by defining
```
⟨x, y, z⟩* = {{x}, {x, y}, {x, y, z}}.
⟨x, y, z⟩* = {{x}, {x, y}, {x, y, z}}.open Set
```
Show that this definition is unsuccessful by giving examples of objects `u`,
`v`, `w`, `x`, `y`, `z` with `⟨x, y, z⟩* = ⟨u, v, w⟩*` but with either `y ≠ v`
@ -115,4 +209,53 @@ theorem exercise_5_3 {A : Set (Set α)} {𝓑 : Set (Set β)}
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
/-- ### Exercise 5.5a
Assume that `A` and `B` are given sets, and show that there exists a set `C`
such that for any `y`,
```
y ∈ C ↔ y = {x} × B for some x in A.
```
In other words, show that `{{x} × B | x ∈ A}` is a set.
-/
theorem exercise_5_5a {A : Set α} {B : Set β}
: ∃ C : Set (Set (α × β)),
y ∈ C ↔ ∃ x ∈ A, y = Set.prod {x} B := by
sorry
/-- ### Exercise 5.5b
With `A`, `B`, and `C` as above, show that `A × B = C`.
-/
theorem exercise_5_5b {A : Set α} (B : Set β)
: Set.prod A B = ⋃₀ {Set.prod ({x} : Set α) B | x ∈ A} := by
suffices Set.prod A B ⊆ ⋃₀ {Set.prod {x} B | x ∈ A} ∧
⋃₀ {Set.prod {x} B | x ∈ A} ⊆ Set.prod A B from
Set.Subset.antisymm_iff.mpr this
apply And.intro
· show ∀ t, t ∈ Set.prod A B → t ∈ ⋃₀ {Set.prod {x} B | x ∈ A}
intro t h
simp only [Set.mem_setOf_eq] at h
unfold Set.sUnion sSup Set.instSupSetSet
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
unfold Set.prod at h
simp only [Set.mem_setOf_eq] at h
refine ⟨t.fst, ⟨h.left, ?_⟩⟩
unfold Set.prod
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq, true_and]
exact h.right
· show ∀ t, t ∈ ⋃₀ {Set.prod {x} B | x ∈ A} → t ∈ Set.prod A B
unfold Set.prod
intro t ht
simp only [
Set.mem_singleton_iff,
Set.mem_sUnion,
Set.mem_setOf_eq,
exists_exists_and_eq_and
] at ht
have ⟨a, ⟨h, ⟨ha, hb⟩⟩⟩ := ht
simp only [Set.mem_setOf_eq]
rw [← ha] at h
exact ⟨h, hb⟩
end Enderton.Set.Chapter_3

View File

@ -1,4 +1,3 @@
import Common.Set.Basic
import Common.Set.Interval
import Common.Set.OrderedPair
import Common.Set.Partition

View File

@ -1,98 +0,0 @@
import Mathlib.Data.Set.Basic
import Common.Logic.Basic
import Common.Set.Basic
namespace Set
/--
Kazimierz Kuratowski's definition of an ordered pair.
Like `Set`, this is a homogeneous structure.
-/
def OrderedPair (x y : α) : Set (Set α) := {{x}, {x, y}}
namespace OrderedPair
/--
For any sets `x`, `y`, `u`, and `v`, `⟨u, v⟩ = ⟨x, y⟩` **iff** `u = x ∧ v = y`.
-/
theorem ext_iff
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
unfold OrderedPair
apply Iff.intro
· intro h
have h' := h
rw [Set.ext_iff] at h'
have hu := h' {u}
have huv := h' {u, v}
simp only [mem_singleton_iff, mem_insert_iff, true_or, iff_true] at hu
simp only [mem_singleton_iff, mem_insert_iff, or_true, iff_true] at huv
apply Or.elim hu
· apply Or.elim huv
· -- #### Case 1
-- `{u} = {x}` and `{u, v} = {x}`.
intro huv_x hu_x
rw [singleton_eq_singleton_iff] at hu_x
rw [hu_x] at huv_x
have hx_v := pair_eq_singleton_mem_imp_eq_self huv_x
rw [hu_x, hx_v] at h
simp only [mem_singleton_iff, insert_eq_of_mem] at h
have := pair_eq_singleton_mem_imp_eq_self $
pair_eq_singleton_mem_imp_eq_self h
rw [← hx_v] at this
exact ⟨hu_x.symm, this⟩
· -- #### Case 2
-- `{u} = {x}` and `{u, v} = {x, y}`.
intro huv_xy hu_x
rw [singleton_eq_singleton_iff] at hu_x
rw [hu_x] at huv_xy
by_cases hx_v : x = v
· rw [hx_v] at huv_xy
simp at huv_xy
have := pair_eq_singleton_mem_imp_eq_self huv_xy.symm
exact ⟨hu_x.symm, this⟩
· rw [Set.ext_iff] at huv_xy
have := huv_xy v
simp at this
apply Or.elim this
· intro hv_x
rw [hu_x, ← hv_x] at h
simp at h
have := pair_eq_singleton_mem_imp_eq_self $
pair_eq_singleton_mem_imp_eq_self h
exact ⟨hu_x.symm, this⟩
· intro hv_y
exact ⟨hu_x.symm, hv_y.symm⟩
· apply Or.elim huv
· -- #### Case 3
-- `{u} = {x, y}` and `{u, v} = {x}`.
intro huv_x hu_xy
rw [Set.ext_iff] at huv_x
have hu_x := huv_x u
have hv_x := huv_x v
simp only [mem_singleton_iff, mem_insert_iff, true_or, true_iff] at hu_x
simp only [mem_singleton_iff, mem_insert_iff, or_true, true_iff] at hv_x
rw [← hu_x] at hu_xy
have := pair_eq_singleton_mem_imp_eq_self hu_xy.symm
rw [hu_x, ← hv_x] at this
exact ⟨hu_x.symm, this⟩
· -- #### Case 4
-- `{u} = {x, y}` and `{u, v} = {x, y}`.
intro huv_xy hu_xy
rw [Set.ext_iff] at hu_xy
have hx_u := hu_xy x
have hy_u := hu_xy y
simp only [mem_singleton_iff, mem_insert_iff, true_or, iff_true] at hx_u
simp only [mem_singleton_iff, mem_insert_iff, or_true, iff_true] at hy_u
rw [hx_u, hy_u] at huv_xy
simp only [mem_singleton_iff, insert_eq_of_mem] at huv_xy
have := pair_eq_singleton_mem_imp_eq_self huv_xy
rw [← this] at hy_u
exact ⟨hx_u, hy_u⟩
· intro h
rw [h.left, h.right]
end OrderedPair
end Set