Enderton. Corollary 4P.
parent
f23d925544
commit
f40e1fddaa
|
@ -7623,26 +7623,22 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
\subparagraph{($\Leftarrow$)}%
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
Let $p$ be a natural number and suppose $m + p \in n + p$.
|
Let $p$ be a natural number and suppose $m + p \in n + p$.
|
||||||
By the \nameref{sub:trichotomy-law-natural-numbers}, there are three
|
By the \nameref{sub:trichotomy-law-natural-numbers}, there are two
|
||||||
ways $m$ and $n$ may relate to one another.
|
cases to consider regarding how $m$ and $n$ relate to one another:
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\textbf{Case 1}: Suppose $m \in n$.
|
\textbf{Case 1}: Suppose $m = n$.
|
||||||
Then our proof is complete.
|
|
||||||
|
|
||||||
\vspace{8pt}
|
|
||||||
\textbf{Case 2}: Suppose $m = n$.
|
|
||||||
Then $m + p \in n + p = m + p$.
|
Then $m + p \in n + p = m + p$.
|
||||||
\nameref{sub:lemma-4l-b} shows this is impossible.
|
\nameref{sub:lemma-4l-b} shows this is impossible.
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\textbf{Case 3}: Suppose $n \in m$.
|
\textbf{Case 2}: Suppose $n \in m$.
|
||||||
Then \nameref{spar:theorem-4n-i-right} indicates $n + p \in m + p$.
|
Then \nameref{spar:theorem-4n-i-right} indicates $n + p \in m + p$.
|
||||||
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
|
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
|
||||||
by hypothesis, $m + p \in n + p$.
|
by hypothesis, $m + p \in n + p$.
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\textbf{Conclusion}: The only possibility is $m \in n$.
|
\textbf{Conclusion}: By trichotomy, it follows $m \in n$.
|
||||||
|
|
||||||
\paragraph{(ii)}%
|
\paragraph{(ii)}%
|
||||||
\hyperlabel{par:theorem-4n-ii}
|
\hyperlabel{par:theorem-4n-ii}
|
||||||
|
@ -7679,46 +7675,72 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
\subparagraph{($\Leftarrow$)}%
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
Let $p \neq 0$ be a natural number and suppose $m \cdot p \in n \cdot p$.
|
Let $p \neq 0$ be a natural number and suppose $m \cdot p \in n \cdot p$.
|
||||||
By the \nameref{sub:trichotomy-law-natural-numbers}, there are three
|
By the \nameref{sub:trichotomy-law-natural-numbers}, there are two
|
||||||
ways $m$ and $n$ may relate to one another.
|
cases to consider regarding how $m$ and $n$ relate to one another:
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\textbf{Case 1}: Suppose $m \in n$.
|
\textbf{Case 1}: Suppose $m = n$.
|
||||||
Then our proof is complete.
|
|
||||||
|
|
||||||
\vspace{8pt}
|
|
||||||
\textbf{Case 2}: Suppose $m = n$.
|
|
||||||
Then $m \cdot p \in n \cdot p = m \cdot p$.
|
Then $m \cdot p \in n \cdot p = m \cdot p$.
|
||||||
\nameref{sub:lemma-4l-b} shows this is impossible.
|
\nameref{sub:lemma-4l-b} shows this is impossible.
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\textbf{Case 3}: Suppose $n \in m$.
|
\textbf{Case 2}: Suppose $n \in m$.
|
||||||
Then \nameref{spar:theorem-4n-ii-right} indicates
|
Then \nameref{spar:theorem-4n-ii-right} indicates
|
||||||
$n \cdot p \in m \cdot p$.
|
$n \cdot p \in m \cdot p$.
|
||||||
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
|
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
|
||||||
by hypothesis, $m \cdot p \in n \cdot p$.
|
by hypothesis, $m \cdot p \in n \cdot p$.
|
||||||
|
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\textbf{Conclusion}: The only possibility is $m \in n$.
|
\textbf{Conclusion}: By trichotomy, it follows $m \in n$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Corollary 4P}}%
|
\subsection{\verified{Corollary 4P}}%
|
||||||
\hyperlabel{sub:corollary-4p}
|
\hyperlabel{sub:corollary-4p}
|
||||||
|
|
||||||
\begin{corollary}[4P]
|
\begin{corollary}[4P]
|
||||||
|
|
||||||
The following cancellation laws hold for $m$, $n$, and $p$ in $\omega$:
|
The following cancellation laws hold for $m$, $n$, and $p$ in $\omega$:
|
||||||
\begin{align*}
|
\begin{align}
|
||||||
m + p = n + p & \Rightarrow m = n, \\
|
m + p = n + p & \Rightarrow m = n,
|
||||||
m \cdot p = n \cdot p & \Rightarrow m = n.
|
& \hyperlabel{sub:corollary-4p-eq1} \\
|
||||||
\end{align*}
|
m \cdot p = n \cdot p \land p \neq 0 & \Rightarrow m = n.
|
||||||
|
& \hyperlabel{sub:corollary-4p-eq2}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
\end{corollary}
|
\end{corollary}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
\statementpadding
|
||||||
|
|
||||||
|
\lean*{Init/Data/Nat/Basic}{Nat.add\_right\_cancel}
|
||||||
|
|
||||||
|
\lean{Common/Nat/Basic}{Nat.mul\_right\_cancel}
|
||||||
|
|
||||||
|
\paragraph{\eqref{sub:corollary-4p-eq1}}%
|
||||||
|
|
||||||
|
Suppose $m + p = n + p$.
|
||||||
|
By the \nameref{sub:trichotomy-law-natural-numbers}, there are two
|
||||||
|
cases to consider regarding how $m$ and $n$ relate to one another.
|
||||||
|
If $m \in n$, then \nameref{sub:theorem-4n} implies $m + p \in n + p$.
|
||||||
|
If $n \in m$, then \nameref{sub:theorem-4n} implies $n + p \in m + p$.
|
||||||
|
Both of these contradict the \nameref{sub:trichotomy-law-natural-numbers} of
|
||||||
|
$m + p$ and $n + p$.
|
||||||
|
Thus $m = n$ is the only remaining possibility.
|
||||||
|
|
||||||
|
\paragraph{\eqref{sub:corollary-4p-eq2}}%
|
||||||
|
|
||||||
|
Suppose $m \cdot p = n \cdot p$ and $p \neq 0$.
|
||||||
|
By the \nameref{sub:trichotomy-law-natural-numbers}, there are two
|
||||||
|
cases to consider regarding how $m$ and $n$ relate to one another.
|
||||||
|
If $m \in n$, then \nameref{sub:theorem-4n} implies
|
||||||
|
$m \cdot p \in n \cdot p$.
|
||||||
|
If $n \in m$, then \nameref{sub:theorem-4n} implies
|
||||||
|
$n \cdot p \in m \cdot p$.
|
||||||
|
Both of these contradict the \nameref{sub:trichotomy-law-natural-numbers} of
|
||||||
|
$m \cdot p$ and $n \cdot p$.
|
||||||
|
Thus $m = n$ is the only remaining possibility.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import Common.List
|
import Common.List
|
||||||
import Common.Logic
|
import Common.Logic
|
||||||
|
import Common.Nat
|
||||||
import Common.Real
|
import Common.Real
|
||||||
import Common.Set
|
import Common.Set
|
|
@ -0,0 +1 @@
|
||||||
|
import Common.Nat.Basic
|
|
@ -0,0 +1,24 @@
|
||||||
|
import Mathlib.Data.Set.Basic
|
||||||
|
|
||||||
|
namespace Nat
|
||||||
|
|
||||||
|
/--
|
||||||
|
The following cancellation law holds for `m`, `n`, and `p` in `ω`:
|
||||||
|
```
|
||||||
|
m ⬝ p = n ⬝ p ∧ p ≠ 0 → m = n
|
||||||
|
```
|
||||||
|
-/
|
||||||
|
theorem mul_right_cancel (m n p : ℕ) (hp : 0 < p) : m * p = n * p → m = n := by
|
||||||
|
intro hmn
|
||||||
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
|
| Or.inl h =>
|
||||||
|
have : m * p < n * p := Nat.mul_lt_mul_of_pos_right h hp
|
||||||
|
rw [hmn] at this
|
||||||
|
simp at this
|
||||||
|
| Or.inr (Or.inl h) => exact h
|
||||||
|
| Or.inr (Or.inr h) =>
|
||||||
|
have : n * p < m * p := Nat.mul_lt_mul_of_pos_right h hp
|
||||||
|
rw [hmn] at this
|
||||||
|
simp at this
|
||||||
|
|
||||||
|
end Nat
|
Loading…
Reference in New Issue