Enderton (set). Add cardinal arithmetic theorems and exercise prompts.

finite-set-exercises
Joshua Potter 2023-08-23 14:22:19 -06:00
parent 6eaea4b6a0
commit f22712faf1
2 changed files with 141 additions and 9 deletions

View File

@ -77,6 +77,19 @@
\lean{Mathlib/Data/Set/Prod}{Set.prod}
\section{\defined{Cardinal Arithmetic}}%
\hyperlabel{sec:cardinal-arithmetic}
Let $\kappa$ and $\lambda$ be any cardinal numbers.
\begin{enumerate}[(a)]
\item $\kappa + \lambda = \card{(K \cup L)}$, where $K$ and $L$ are any
disjoint sets of cardinality $\kappa$ and $\lambda$, respectively.
\item $\kappa \cdot \lambda = \card{(K \times L)}$, where $K$ and $L$ are
any sets of cardinality $\kappa$ and $\lambda$, respectively.
\item $\kappa^\lambda = \card{^L{K}}$, where $K$ and $L$ are any sets of
cardinality $\kappa$ and $\lambda$, respectively.
\end{enumerate}
\section{\defined{Compatible}}%
\hyperlabel{ref:compatible}
@ -8811,11 +8824,73 @@
Hence $S'$ is a finite set.
\end{proof}
\subsection{\sorry{Theorem 6H}}%
\hyperlabel{sub:theorem-6h}
Assume that $\equinumerous{K_1}{K_2}$ and $\equinumerous{L_1}{L_2}$.
\begin{enumerate}[(a)]
\item If $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, then
$\equinumerous{K_1 \cup L_1}{K_2 \cup L_2}$.
\item $\equinumerous{K_1 \times L_1}{K_2 \times L_2}$.
\item $\equinumerous{^{(L_1)}{K_1}}{^{(L_2)}{K_2}}$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 6I}}%
\hyperlabel{sub:theorem-6i}
For any cardinal numbers $\kappa$, $\lambda$, and $\mu$:
\begin{enumerate}
\item $\kappa + \lambda = \lambda + \kappa$ and
$\kappa \cdot \lambda = \lambda \cdot \kappa$.
\item $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$ and
$\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$.
\item $\kappa \cdot (\lambda + \mu) =
\kappa \cdot \lambda + \kappa \cdot \mu$.
\item $\kappa^{\lambda + \mu} = \kappa^\lambda \cdot \kappa^\mu$.
\item $(\kappa \cdot \lambda)^\mu = \kappa^\mu \cdot \lambda^\mu$.
\item $(\kappa^\lambda)^\mu = \kappa^{\lambda \cdot \mu}$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 6J}}%
\hyperlabel{sub:theorem-6j}
Let $m$ and $n$ be finite cardinals.
Then
\begin{align*}
m + n & = m +_\omega n, \\
m \cdot n = m \cdot_\omega n, \\
m^n = m^n,
\end{align*}
where on the right side we use the operations of $\omega$ defined via
recursion and on the left side we use the operations of cardinal arithmetic.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Corollary 6K}}%
\hyperlabel{sub:corollary-6k}
If $A$ and $B$ are finite, then $A \cup B$, $A \times B$, and $^B{A}$ are also
finite.
\begin{proof}
TODO
\end{proof}
\section{Exercises 6}%
\hyperlabel{sec:exercises-6}
\subsection{\unverified{Exercise 6.1}}%
\hyperlabel{sub:exercise-6-1}
\hyperlabel{sub:exercise-6.1}
Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one
correspondence between $\omega \times \omega$ and $\omega$.
@ -8894,7 +8969,7 @@
\end{proof}
\subsection{\unverified{Exercise 6.2}}%
\hyperlabel{sub:exercise-6-2}
\hyperlabel{sub:exercise-6.2}
Show that in Fig. 32 we have:
\begin{align*}
@ -8933,7 +9008,7 @@
\end{proof}
\subsection{\unverified{Exercise 6.3}}%
\hyperlabel{sub:exercise-6-3}
\hyperlabel{sub:exercise-6.3}
Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$
and $\mathbb{R}$ that takes rationals to rationals and irrationals to
@ -9087,7 +9162,7 @@
\end{proof}
\subsection{\sorry{Exercise 6.4}}%
\hyperlabel{sub:exercise-6-4}
\hyperlabel{sub:exercise-6.4}
Construct a one-to-one correspondence between the closed unit interval
$$\icc{0}{1} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$
@ -9098,7 +9173,7 @@
\end{proof}
\subsection{\verified{Exercise 6.5}}%
\hyperlabel{sub:exercise-6-5}
\hyperlabel{sub:exercise-6.5}
Prove \nameref{sub:theorem-6a}.
@ -9107,7 +9182,7 @@
\end{proof}
\subsection{\sorry{Exercise 6.6}}%
\hyperlabel{sub:exercise-6-6}
\hyperlabel{sub:exercise-6.6}
Let $\kappa$ be a nonzero cardinal number.
Show there does not exist a set to which every set of cardinality $\kappa$
@ -9118,7 +9193,7 @@
\end{proof}
\subsection{\sorry{Exercise 6.7}}%
\hyperlabel{sub:exercise-6-7}
\hyperlabel{sub:exercise-6.7}
Assume that $A$ is finite and $f \colon A \rightarrow A$.
Show that $f$ is one-to-one iff $\ran{f} = A$.
@ -9128,7 +9203,7 @@
\end{proof}
\subsection{\sorry{Exercise 6.8}}%
\hyperlabel{sub:exercise-6-8}
\hyperlabel{sub:exercise-6.8}
Prove that the union of two finite sets is finite, without any use of
arithmetic.
@ -9138,7 +9213,7 @@
\end{proof}
\subsection{\sorry{Exercise 6.9}}%
\hyperlabel{sub:exercise-6-9}
\hyperlabel{sub:exercise-6.9}
Prove that the Cartesian product of two finite sets is finite, without any use
of arithmetic.
@ -9147,4 +9222,60 @@
TODO
\end{proof}
\subsection{\sorry{Exercise 6.10}}%
\hyperlabel{sub:exercise-6.10}
Prove part 4 of \nameref{sub:theorem-6i}.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.11}}%
\hyperlabel{sub:exercise-6.11}
Prove part 5 of \nameref{sub:theorem-6i}.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.12}}%
\hyperlabel{sub:exercise-6.12}
The proof to \nameref{sub:theorem-6i} involves eight instances of showing two
sets to be equinumerous.
(The eight are listed in the proof of the theorem as statements numbered 1-6.)
In which of these eight cases does equality actually hold?
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.13}}%
\hyperlabel{sub:exercise-6.13}
Show that a finite union of finite sets is finite.
That is, show that if $B$ is a finite set whose members are themselves finite
sets, then $\bigcup{B}$ is finite.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.14}}%
\hyperlabel{sub:exercise-6.14}
Define a \textit{permutation} of $K$ to be any one-to-one function from $K$
onto $K$.
We can the define the factorial operation on cardinal numbers by the equation
$$\kappa! = \card{\{f \mid f \text{ is a permutation of } K\}},$$
where $K$ is any set of cardinality $\kappa$.
Show that $\kappa!$ is well defined, i.e. the value of $\kappa!$ is
independent of just which set $K$ is chosen.
\begin{proof}
TODO
\end{proof}
\end{document}

View File

@ -166,6 +166,7 @@
% ========================================
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\card}[1]{\mathop{\text{card}}{#1}}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
\newcommand{\dom}[1]{\textop{dom}{#1}}