Enderton (set). Add cardinal arithmetic theorems and exercise prompts.

finite-set-exercises
Joshua Potter 2023-08-23 14:22:19 -06:00
parent 6eaea4b6a0
commit f22712faf1
2 changed files with 141 additions and 9 deletions

View File

@ -77,6 +77,19 @@
\lean{Mathlib/Data/Set/Prod}{Set.prod} \lean{Mathlib/Data/Set/Prod}{Set.prod}
\section{\defined{Cardinal Arithmetic}}%
\hyperlabel{sec:cardinal-arithmetic}
Let $\kappa$ and $\lambda$ be any cardinal numbers.
\begin{enumerate}[(a)]
\item $\kappa + \lambda = \card{(K \cup L)}$, where $K$ and $L$ are any
disjoint sets of cardinality $\kappa$ and $\lambda$, respectively.
\item $\kappa \cdot \lambda = \card{(K \times L)}$, where $K$ and $L$ are
any sets of cardinality $\kappa$ and $\lambda$, respectively.
\item $\kappa^\lambda = \card{^L{K}}$, where $K$ and $L$ are any sets of
cardinality $\kappa$ and $\lambda$, respectively.
\end{enumerate}
\section{\defined{Compatible}}% \section{\defined{Compatible}}%
\hyperlabel{ref:compatible} \hyperlabel{ref:compatible}
@ -8811,11 +8824,73 @@
Hence $S'$ is a finite set. Hence $S'$ is a finite set.
\end{proof} \end{proof}
\subsection{\sorry{Theorem 6H}}%
\hyperlabel{sub:theorem-6h}
Assume that $\equinumerous{K_1}{K_2}$ and $\equinumerous{L_1}{L_2}$.
\begin{enumerate}[(a)]
\item If $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, then
$\equinumerous{K_1 \cup L_1}{K_2 \cup L_2}$.
\item $\equinumerous{K_1 \times L_1}{K_2 \times L_2}$.
\item $\equinumerous{^{(L_1)}{K_1}}{^{(L_2)}{K_2}}$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 6I}}%
\hyperlabel{sub:theorem-6i}
For any cardinal numbers $\kappa$, $\lambda$, and $\mu$:
\begin{enumerate}
\item $\kappa + \lambda = \lambda + \kappa$ and
$\kappa \cdot \lambda = \lambda \cdot \kappa$.
\item $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$ and
$\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$.
\item $\kappa \cdot (\lambda + \mu) =
\kappa \cdot \lambda + \kappa \cdot \mu$.
\item $\kappa^{\lambda + \mu} = \kappa^\lambda \cdot \kappa^\mu$.
\item $(\kappa \cdot \lambda)^\mu = \kappa^\mu \cdot \lambda^\mu$.
\item $(\kappa^\lambda)^\mu = \kappa^{\lambda \cdot \mu}$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 6J}}%
\hyperlabel{sub:theorem-6j}
Let $m$ and $n$ be finite cardinals.
Then
\begin{align*}
m + n & = m +_\omega n, \\
m \cdot n = m \cdot_\omega n, \\
m^n = m^n,
\end{align*}
where on the right side we use the operations of $\omega$ defined via
recursion and on the left side we use the operations of cardinal arithmetic.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Corollary 6K}}%
\hyperlabel{sub:corollary-6k}
If $A$ and $B$ are finite, then $A \cup B$, $A \times B$, and $^B{A}$ are also
finite.
\begin{proof}
TODO
\end{proof}
\section{Exercises 6}% \section{Exercises 6}%
\hyperlabel{sec:exercises-6} \hyperlabel{sec:exercises-6}
\subsection{\unverified{Exercise 6.1}}% \subsection{\unverified{Exercise 6.1}}%
\hyperlabel{sub:exercise-6-1} \hyperlabel{sub:exercise-6.1}
Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one
correspondence between $\omega \times \omega$ and $\omega$. correspondence between $\omega \times \omega$ and $\omega$.
@ -8894,7 +8969,7 @@
\end{proof} \end{proof}
\subsection{\unverified{Exercise 6.2}}% \subsection{\unverified{Exercise 6.2}}%
\hyperlabel{sub:exercise-6-2} \hyperlabel{sub:exercise-6.2}
Show that in Fig. 32 we have: Show that in Fig. 32 we have:
\begin{align*} \begin{align*}
@ -8933,7 +9008,7 @@
\end{proof} \end{proof}
\subsection{\unverified{Exercise 6.3}}% \subsection{\unverified{Exercise 6.3}}%
\hyperlabel{sub:exercise-6-3} \hyperlabel{sub:exercise-6.3}
Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$ Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$
and $\mathbb{R}$ that takes rationals to rationals and irrationals to and $\mathbb{R}$ that takes rationals to rationals and irrationals to
@ -9087,7 +9162,7 @@
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.4}}% \subsection{\sorry{Exercise 6.4}}%
\hyperlabel{sub:exercise-6-4} \hyperlabel{sub:exercise-6.4}
Construct a one-to-one correspondence between the closed unit interval Construct a one-to-one correspondence between the closed unit interval
$$\icc{0}{1} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$ $$\icc{0}{1} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$
@ -9098,7 +9173,7 @@
\end{proof} \end{proof}
\subsection{\verified{Exercise 6.5}}% \subsection{\verified{Exercise 6.5}}%
\hyperlabel{sub:exercise-6-5} \hyperlabel{sub:exercise-6.5}
Prove \nameref{sub:theorem-6a}. Prove \nameref{sub:theorem-6a}.
@ -9107,7 +9182,7 @@
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.6}}% \subsection{\sorry{Exercise 6.6}}%
\hyperlabel{sub:exercise-6-6} \hyperlabel{sub:exercise-6.6}
Let $\kappa$ be a nonzero cardinal number. Let $\kappa$ be a nonzero cardinal number.
Show there does not exist a set to which every set of cardinality $\kappa$ Show there does not exist a set to which every set of cardinality $\kappa$
@ -9118,7 +9193,7 @@
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.7}}% \subsection{\sorry{Exercise 6.7}}%
\hyperlabel{sub:exercise-6-7} \hyperlabel{sub:exercise-6.7}
Assume that $A$ is finite and $f \colon A \rightarrow A$. Assume that $A$ is finite and $f \colon A \rightarrow A$.
Show that $f$ is one-to-one iff $\ran{f} = A$. Show that $f$ is one-to-one iff $\ran{f} = A$.
@ -9128,7 +9203,7 @@
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.8}}% \subsection{\sorry{Exercise 6.8}}%
\hyperlabel{sub:exercise-6-8} \hyperlabel{sub:exercise-6.8}
Prove that the union of two finite sets is finite, without any use of Prove that the union of two finite sets is finite, without any use of
arithmetic. arithmetic.
@ -9138,7 +9213,7 @@
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.9}}% \subsection{\sorry{Exercise 6.9}}%
\hyperlabel{sub:exercise-6-9} \hyperlabel{sub:exercise-6.9}
Prove that the Cartesian product of two finite sets is finite, without any use Prove that the Cartesian product of two finite sets is finite, without any use
of arithmetic. of arithmetic.
@ -9147,4 +9222,60 @@
TODO TODO
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.10}}%
\hyperlabel{sub:exercise-6.10}
Prove part 4 of \nameref{sub:theorem-6i}.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.11}}%
\hyperlabel{sub:exercise-6.11}
Prove part 5 of \nameref{sub:theorem-6i}.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.12}}%
\hyperlabel{sub:exercise-6.12}
The proof to \nameref{sub:theorem-6i} involves eight instances of showing two
sets to be equinumerous.
(The eight are listed in the proof of the theorem as statements numbered 1-6.)
In which of these eight cases does equality actually hold?
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.13}}%
\hyperlabel{sub:exercise-6.13}
Show that a finite union of finite sets is finite.
That is, show that if $B$ is a finite set whose members are themselves finite
sets, then $\bigcup{B}$ is finite.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 6.14}}%
\hyperlabel{sub:exercise-6.14}
Define a \textit{permutation} of $K$ to be any one-to-one function from $K$
onto $K$.
We can the define the factorial operation on cardinal numbers by the equation
$$\kappa! = \card{\{f \mid f \text{ is a permutation of } K\}},$$
where $K$ is any set of cardinality $\kappa$.
Show that $\kappa!$ is well defined, i.e. the value of $\kappa!$ is
independent of just which set $K$ is chosen.
\begin{proof}
TODO
\end{proof}
\end{document} \end{document}

View File

@ -166,6 +166,7 @@
% ======================================== % ========================================
\newcommand{\abs}[1]{\left|#1\right|} \newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\card}[1]{\mathop{\text{card}}{#1}}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>} \newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
\newcommand{\dom}[1]{\textop{dom}{#1}} \newcommand{\dom}[1]{\textop{dom}{#1}}