Enderton (set). Add cardinal arithmetic theorems and exercise prompts.
parent
6eaea4b6a0
commit
f22712faf1
|
@ -77,6 +77,19 @@
|
||||||
|
|
||||||
\lean{Mathlib/Data/Set/Prod}{Set.prod}
|
\lean{Mathlib/Data/Set/Prod}{Set.prod}
|
||||||
|
|
||||||
|
\section{\defined{Cardinal Arithmetic}}%
|
||||||
|
\hyperlabel{sec:cardinal-arithmetic}
|
||||||
|
|
||||||
|
Let $\kappa$ and $\lambda$ be any cardinal numbers.
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item $\kappa + \lambda = \card{(K \cup L)}$, where $K$ and $L$ are any
|
||||||
|
disjoint sets of cardinality $\kappa$ and $\lambda$, respectively.
|
||||||
|
\item $\kappa \cdot \lambda = \card{(K \times L)}$, where $K$ and $L$ are
|
||||||
|
any sets of cardinality $\kappa$ and $\lambda$, respectively.
|
||||||
|
\item $\kappa^\lambda = \card{^L{K}}$, where $K$ and $L$ are any sets of
|
||||||
|
cardinality $\kappa$ and $\lambda$, respectively.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\section{\defined{Compatible}}%
|
\section{\defined{Compatible}}%
|
||||||
\hyperlabel{ref:compatible}
|
\hyperlabel{ref:compatible}
|
||||||
|
|
||||||
|
@ -8811,11 +8824,73 @@
|
||||||
Hence $S'$ is a finite set.
|
Hence $S'$ is a finite set.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Theorem 6H}}%
|
||||||
|
\hyperlabel{sub:theorem-6h}
|
||||||
|
|
||||||
|
Assume that $\equinumerous{K_1}{K_2}$ and $\equinumerous{L_1}{L_2}$.
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item If $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, then
|
||||||
|
$\equinumerous{K_1 \cup L_1}{K_2 \cup L_2}$.
|
||||||
|
\item $\equinumerous{K_1 \times L_1}{K_2 \times L_2}$.
|
||||||
|
\item $\equinumerous{^{(L_1)}{K_1}}{^{(L_2)}{K_2}}$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Theorem 6I}}%
|
||||||
|
\hyperlabel{sub:theorem-6i}
|
||||||
|
|
||||||
|
For any cardinal numbers $\kappa$, $\lambda$, and $\mu$:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $\kappa + \lambda = \lambda + \kappa$ and
|
||||||
|
$\kappa \cdot \lambda = \lambda \cdot \kappa$.
|
||||||
|
\item $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$ and
|
||||||
|
$\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$.
|
||||||
|
\item $\kappa \cdot (\lambda + \mu) =
|
||||||
|
\kappa \cdot \lambda + \kappa \cdot \mu$.
|
||||||
|
\item $\kappa^{\lambda + \mu} = \kappa^\lambda \cdot \kappa^\mu$.
|
||||||
|
\item $(\kappa \cdot \lambda)^\mu = \kappa^\mu \cdot \lambda^\mu$.
|
||||||
|
\item $(\kappa^\lambda)^\mu = \kappa^{\lambda \cdot \mu}$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Theorem 6J}}%
|
||||||
|
\hyperlabel{sub:theorem-6j}
|
||||||
|
|
||||||
|
Let $m$ and $n$ be finite cardinals.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
m + n & = m +_\omega n, \\
|
||||||
|
m \cdot n = m \cdot_\omega n, \\
|
||||||
|
m^n = m^n,
|
||||||
|
\end{align*}
|
||||||
|
where on the right side we use the operations of $\omega$ defined via
|
||||||
|
recursion and on the left side we use the operations of cardinal arithmetic.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Corollary 6K}}%
|
||||||
|
\hyperlabel{sub:corollary-6k}
|
||||||
|
|
||||||
|
If $A$ and $B$ are finite, then $A \cup B$, $A \times B$, and $^B{A}$ are also
|
||||||
|
finite.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\section{Exercises 6}%
|
\section{Exercises 6}%
|
||||||
\hyperlabel{sec:exercises-6}
|
\hyperlabel{sec:exercises-6}
|
||||||
|
|
||||||
\subsection{\unverified{Exercise 6.1}}%
|
\subsection{\unverified{Exercise 6.1}}%
|
||||||
\hyperlabel{sub:exercise-6-1}
|
\hyperlabel{sub:exercise-6.1}
|
||||||
|
|
||||||
Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one
|
Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one
|
||||||
correspondence between $\omega \times \omega$ and $\omega$.
|
correspondence between $\omega \times \omega$ and $\omega$.
|
||||||
|
@ -8894,7 +8969,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\unverified{Exercise 6.2}}%
|
\subsection{\unverified{Exercise 6.2}}%
|
||||||
\hyperlabel{sub:exercise-6-2}
|
\hyperlabel{sub:exercise-6.2}
|
||||||
|
|
||||||
Show that in Fig. 32 we have:
|
Show that in Fig. 32 we have:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
@ -8933,7 +9008,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\unverified{Exercise 6.3}}%
|
\subsection{\unverified{Exercise 6.3}}%
|
||||||
\hyperlabel{sub:exercise-6-3}
|
\hyperlabel{sub:exercise-6.3}
|
||||||
|
|
||||||
Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$
|
Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$
|
||||||
and $\mathbb{R}$ that takes rationals to rationals and irrationals to
|
and $\mathbb{R}$ that takes rationals to rationals and irrationals to
|
||||||
|
@ -9087,7 +9162,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 6.4}}%
|
\subsection{\sorry{Exercise 6.4}}%
|
||||||
\hyperlabel{sub:exercise-6-4}
|
\hyperlabel{sub:exercise-6.4}
|
||||||
|
|
||||||
Construct a one-to-one correspondence between the closed unit interval
|
Construct a one-to-one correspondence between the closed unit interval
|
||||||
$$\icc{0}{1} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$
|
$$\icc{0}{1} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$
|
||||||
|
@ -9098,7 +9173,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Exercise 6.5}}%
|
\subsection{\verified{Exercise 6.5}}%
|
||||||
\hyperlabel{sub:exercise-6-5}
|
\hyperlabel{sub:exercise-6.5}
|
||||||
|
|
||||||
Prove \nameref{sub:theorem-6a}.
|
Prove \nameref{sub:theorem-6a}.
|
||||||
|
|
||||||
|
@ -9107,7 +9182,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 6.6}}%
|
\subsection{\sorry{Exercise 6.6}}%
|
||||||
\hyperlabel{sub:exercise-6-6}
|
\hyperlabel{sub:exercise-6.6}
|
||||||
|
|
||||||
Let $\kappa$ be a nonzero cardinal number.
|
Let $\kappa$ be a nonzero cardinal number.
|
||||||
Show there does not exist a set to which every set of cardinality $\kappa$
|
Show there does not exist a set to which every set of cardinality $\kappa$
|
||||||
|
@ -9118,7 +9193,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 6.7}}%
|
\subsection{\sorry{Exercise 6.7}}%
|
||||||
\hyperlabel{sub:exercise-6-7}
|
\hyperlabel{sub:exercise-6.7}
|
||||||
|
|
||||||
Assume that $A$ is finite and $f \colon A \rightarrow A$.
|
Assume that $A$ is finite and $f \colon A \rightarrow A$.
|
||||||
Show that $f$ is one-to-one iff $\ran{f} = A$.
|
Show that $f$ is one-to-one iff $\ran{f} = A$.
|
||||||
|
@ -9128,7 +9203,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 6.8}}%
|
\subsection{\sorry{Exercise 6.8}}%
|
||||||
\hyperlabel{sub:exercise-6-8}
|
\hyperlabel{sub:exercise-6.8}
|
||||||
|
|
||||||
Prove that the union of two finite sets is finite, without any use of
|
Prove that the union of two finite sets is finite, without any use of
|
||||||
arithmetic.
|
arithmetic.
|
||||||
|
@ -9138,7 +9213,7 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 6.9}}%
|
\subsection{\sorry{Exercise 6.9}}%
|
||||||
\hyperlabel{sub:exercise-6-9}
|
\hyperlabel{sub:exercise-6.9}
|
||||||
|
|
||||||
Prove that the Cartesian product of two finite sets is finite, without any use
|
Prove that the Cartesian product of two finite sets is finite, without any use
|
||||||
of arithmetic.
|
of arithmetic.
|
||||||
|
@ -9147,4 +9222,60 @@
|
||||||
TODO
|
TODO
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 6.10}}%
|
||||||
|
\hyperlabel{sub:exercise-6.10}
|
||||||
|
|
||||||
|
Prove part 4 of \nameref{sub:theorem-6i}.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 6.11}}%
|
||||||
|
\hyperlabel{sub:exercise-6.11}
|
||||||
|
|
||||||
|
Prove part 5 of \nameref{sub:theorem-6i}.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 6.12}}%
|
||||||
|
\hyperlabel{sub:exercise-6.12}
|
||||||
|
|
||||||
|
The proof to \nameref{sub:theorem-6i} involves eight instances of showing two
|
||||||
|
sets to be equinumerous.
|
||||||
|
(The eight are listed in the proof of the theorem as statements numbered 1-6.)
|
||||||
|
In which of these eight cases does equality actually hold?
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 6.13}}%
|
||||||
|
\hyperlabel{sub:exercise-6.13}
|
||||||
|
|
||||||
|
Show that a finite union of finite sets is finite.
|
||||||
|
That is, show that if $B$ is a finite set whose members are themselves finite
|
||||||
|
sets, then $\bigcup{B}$ is finite.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 6.14}}%
|
||||||
|
\hyperlabel{sub:exercise-6.14}
|
||||||
|
|
||||||
|
Define a \textit{permutation} of $K$ to be any one-to-one function from $K$
|
||||||
|
onto $K$.
|
||||||
|
We can the define the factorial operation on cardinal numbers by the equation
|
||||||
|
$$\kappa! = \card{\{f \mid f \text{ is a permutation of } K\}},$$
|
||||||
|
where $K$ is any set of cardinality $\kappa$.
|
||||||
|
Show that $\kappa!$ is well defined, i.e. the value of $\kappa!$ is
|
||||||
|
independent of just which set $K$ is chosen.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
TODO
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
@ -166,6 +166,7 @@
|
||||||
% ========================================
|
% ========================================
|
||||||
|
|
||||||
\newcommand{\abs}[1]{\left|#1\right|}
|
\newcommand{\abs}[1]{\left|#1\right|}
|
||||||
|
\newcommand{\card}[1]{\mathop{\text{card}}{#1}}
|
||||||
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
||||||
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
|
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
|
||||||
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
||||||
|
|
Loading…
Reference in New Issue