Enderton (set). Wrap original pigeonhole expression into aux.
parent
91fc8436da
commit
f1a10c6877
|
@ -65,11 +65,12 @@ theorem theorem_6b (A : Set α)
|
|||
have := hfa.right ⟨ha, h⟩
|
||||
exact absurd this h
|
||||
|
||||
/-- #### Pigeonhole Principle
|
||||
/-! #### Pigeonhole Principle
|
||||
|
||||
No natural number is equinumerous to a proper subset of itself.
|
||||
-/
|
||||
theorem pigeonhole_principle (n : ℕ)
|
||||
|
||||
lemma pigeonhole_principle_aux (n : ℕ)
|
||||
: ∀ m : ℕ, m < n →
|
||||
∀ f : Fin m → Fin n, Function.Injective f →
|
||||
¬ Function.Surjective f := by
|
||||
|
@ -318,6 +319,12 @@ theorem pigeonhole_principle (n : ℕ)
|
|||
simp only [Fin.coe_eq_castSucc, Set.mem_setOf_eq] at hfa
|
||||
exact absurd (hf_surj $ Fin.castSucc a) hfa
|
||||
|
||||
theorem pigeonhole_principle (m n : ℕ) (h : m < n)
|
||||
: ∀ f : Fin m → Fin n, ¬ Function.Bijective f := by
|
||||
intro f nf
|
||||
have := pigeonhole_principle_aux n m h f nf.left
|
||||
exact absurd nf.right this
|
||||
|
||||
/-- #### Corollary 6C
|
||||
|
||||
No finite set is equinumerous to a proper subset of itself.
|
||||
|
|
Loading…
Reference in New Issue