Enderton (set). Wrap original pigeonhole expression into aux.
parent
91fc8436da
commit
f1a10c6877
|
@ -65,11 +65,12 @@ theorem theorem_6b (A : Set α)
|
||||||
have := hfa.right ⟨ha, h⟩
|
have := hfa.right ⟨ha, h⟩
|
||||||
exact absurd this h
|
exact absurd this h
|
||||||
|
|
||||||
/-- #### Pigeonhole Principle
|
/-! #### Pigeonhole Principle
|
||||||
|
|
||||||
No natural number is equinumerous to a proper subset of itself.
|
No natural number is equinumerous to a proper subset of itself.
|
||||||
-/
|
-/
|
||||||
theorem pigeonhole_principle (n : ℕ)
|
|
||||||
|
lemma pigeonhole_principle_aux (n : ℕ)
|
||||||
: ∀ m : ℕ, m < n →
|
: ∀ m : ℕ, m < n →
|
||||||
∀ f : Fin m → Fin n, Function.Injective f →
|
∀ f : Fin m → Fin n, Function.Injective f →
|
||||||
¬ Function.Surjective f := by
|
¬ Function.Surjective f := by
|
||||||
|
@ -318,6 +319,12 @@ theorem pigeonhole_principle (n : ℕ)
|
||||||
simp only [Fin.coe_eq_castSucc, Set.mem_setOf_eq] at hfa
|
simp only [Fin.coe_eq_castSucc, Set.mem_setOf_eq] at hfa
|
||||||
exact absurd (hf_surj $ Fin.castSucc a) hfa
|
exact absurd (hf_surj $ Fin.castSucc a) hfa
|
||||||
|
|
||||||
|
theorem pigeonhole_principle (m n : ℕ) (h : m < n)
|
||||||
|
: ∀ f : Fin m → Fin n, ¬ Function.Bijective f := by
|
||||||
|
intro f nf
|
||||||
|
have := pigeonhole_principle_aux n m h f nf.left
|
||||||
|
exact absurd nf.right this
|
||||||
|
|
||||||
/-- #### Corollary 6C
|
/-- #### Corollary 6C
|
||||||
|
|
||||||
No finite set is equinumerous to a proper subset of itself.
|
No finite set is equinumerous to a proper subset of itself.
|
||||||
|
|
Loading…
Reference in New Issue