Add start of Enderton's "Elements of Set Theory."
parent
5233126f05
commit
ed981c3892
|
@ -1,4 +1,5 @@
|
|||
import Bookshelf.Apostol
|
||||
import Bookshelf.Avigad
|
||||
import Bookshelf.Enderton_Logic
|
||||
import Bookshelf.Enderton.Logic
|
||||
import Bookshelf.Enderton.Set
|
||||
import Bookshelf.Fraleigh
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Enderton.Logic.Chapter_0
|
|
@ -1,7 +1,7 @@
|
|||
\documentclass{report}
|
||||
|
||||
\input{../preamble}
|
||||
\makeleancommands
|
||||
\input{../../preamble}
|
||||
\makeleancommands{../..}
|
||||
|
||||
\begin{document}
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
/-! # Enderton.Logic.Chapter_0
|
||||
|
||||
Useful Facts About Sets
|
||||
-/
|
||||
|
||||
namespace Enderton.Logic.Chapter_0
|
||||
|
||||
-- TODO
|
||||
|
||||
end Enderton.Logic.Chapter_0
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Enderton.Set.Chapter_1
|
|
@ -0,0 +1,190 @@
|
|||
\documentclass{report}
|
||||
|
||||
\input{../../preamble}
|
||||
\makeleancommands{../..}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\header{Elements of Set Theory}{Herbert B. Enderton}
|
||||
|
||||
\tableofcontents
|
||||
|
||||
\begingroup
|
||||
\renewcommand\thechapter{R}
|
||||
\setcounter{chapter}{0}
|
||||
\addtocounter{chapter}{-1}
|
||||
|
||||
\chapter{Reference}%
|
||||
\label{chap:reference}
|
||||
|
||||
\section{\defined{Powerset}}%
|
||||
\label{ref:powerset}
|
||||
|
||||
The \textbf{powerset} of some set $A$ is the set of all subsets of $A$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean{Mathlib/Init/Set}{Set.powerset}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Principle of Extensionality}}%
|
||||
\label{ref:principle-extensionality}
|
||||
|
||||
If $A$ and $B$ are sets such that for every object $t$,
|
||||
$$t \in A \quad\text{iff}\quad t \in B,$$
|
||||
then $A = B$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\lean{Mathlib/Init/Set}{Set.ext}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\endgroup
|
||||
|
||||
\chapter{Introduction}%
|
||||
\label{chap:introduction}
|
||||
|
||||
\section{Baby Set Theory}%
|
||||
\label{sec:baby-set-theory}
|
||||
|
||||
\subsection{\partial{Exercise 1}}%
|
||||
\label{sub:baby-set-theory-1}
|
||||
|
||||
Which of the following become true when "$\in$" is inserted in place of the
|
||||
blank?
|
||||
Which become true when "$\subseteq$" is inserted?
|
||||
|
||||
\subsubsection{\partial{Exercise 1a}}%
|
||||
\label{ssub:baby-set-theory-1a}
|
||||
|
||||
$\{\emptyset\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Because the \textit{object} $\{\emptyset\}$ is a member of the right-hand set,
|
||||
the statement is \textbf{true} in the case of "$\in$".
|
||||
|
||||
Because the \textit{members} of $\{\emptyset\}$ are all members of the
|
||||
right-hand set, the statement is also \textbf{true} in the case of
|
||||
"$\subseteq$".
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1b}}%
|
||||
\label{ssub:baby-set-theory-1b}
|
||||
|
||||
$\{\emptyset\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Because the \textit{object} $\{\emptyset\}$ is not a member of the right-hand
|
||||
set, the statement is \textbf{false} in the case of "$\in$".
|
||||
|
||||
Because the \textit{members} of $\{\emptyset\}$ are all members of the
|
||||
right-hand set, the statement is \textbf{true} in the case of "$\subseteq$".
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1c}}%
|
||||
\label{ssub:baby-set-theory-1c}
|
||||
|
||||
$\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the
|
||||
right-hand set, the statement is \textbf{false} in the case of "$\in$".
|
||||
|
||||
Because the \textit{members} of $\{\{\emptyset\}\}$ are all members of the
|
||||
right-hand set, the statement is \textbf{true} in the case of "$\subseteq$".
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1d}}%
|
||||
\label{ssub:baby-set-theory-1d}
|
||||
|
||||
$\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Because the \textit{object} $\{\{\emptyset\}\}$ is a member of the right-hand
|
||||
set, the statement is \textbf{true} in the case of "$\in$".
|
||||
|
||||
Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the
|
||||
right-hand set, the statement is \textbf{false} in the case of
|
||||
"$\subseteq$".
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1e}}%
|
||||
\label{ssub:baby-set-theory-1e}
|
||||
|
||||
$\{\{\emptyset\}\} \_\_ \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the
|
||||
right-hand set, the statement is \textbf{false} in the case of "$\in$".
|
||||
|
||||
Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the
|
||||
right-hand set, the statement is \textbf{false} in the case of
|
||||
"$\subseteq$".
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Exercise 2}}%
|
||||
\label{sub:baby-set-theory-2}
|
||||
|
||||
Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and
|
||||
$\{\{\emptyset\}\}$ are equal to each other.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
By the \nameref{ref:principle-extensionality}, $\emptyset$ is only equal to
|
||||
$\emptyset$.
|
||||
This immediately shows it is not equal to the other two.
|
||||
Now consider object $\emptyset$.
|
||||
This object is a member of $\{\emptyset\}$ but is not a member of
|
||||
$\{\{\emptyset\}\}$.
|
||||
Again, by the \nameref{ref:principle-extensionality}, these two sets must be
|
||||
different.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Exercise 3}}%
|
||||
\label{sub:baby-set-theory-3}
|
||||
|
||||
Show that if $B \subseteq C$, then $\mathscr{P} B \subseteq \mathscr{P} C$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $x \in \mathscr{P} B$.
|
||||
By definition of the \nameref{ref:powerset}, $x$ is a subset of $B$.
|
||||
By hypothesis, $B \subseteq C$.
|
||||
Then $x \subseteq C$.
|
||||
Again by definition of the \nameref{ref:powerset}, it follows
|
||||
$x \in \mathscr{P} C$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Exercise 4}}%
|
||||
\label{sub:baby-set-theory-4}
|
||||
|
||||
Assume that $x$ and $y$ are members of a set $B$.
|
||||
Show that $\{\{x\}, \{x, y\}\} \in \mathscr{P}\mathscr{P} B.$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $x$ and $y$ be members of set $B$.
|
||||
Then $\{x\}$ and $\{x, y\}$ are subsets of $B$.
|
||||
By definition of the \nameref{ref:powerset}, $\{x\}$ and $\{x, y\}$ are
|
||||
members of $\mathscr{P} B$.
|
||||
Then $\{\{x\}, \{x, y\}\}$ is a subset of $\mathscr{P} B$.
|
||||
By definition of the \nameref{ref:powerset}, $\{\{x\}, \{x, y\}\}$ is a member
|
||||
of $\mathscr{P}\mathscr{P} B$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,13 @@
|
|||
import Mathlib.Init.Set
|
||||
|
||||
/-! # Enderton.Chapter_1
|
||||
|
||||
Introduction
|
||||
-/
|
||||
|
||||
namespace Enderton.Set.Chapter_1
|
||||
|
||||
|
||||
|
||||
|
||||
end Enderton.Set.Chapter_1
|
|
@ -1 +0,0 @@
|
|||
import Bookshelf.Enderton_Logic.Chapter_0
|
|
@ -1,10 +0,0 @@
|
|||
/-! # Enderton.Chapter_0
|
||||
|
||||
Useful Facts About Sets
|
||||
-/
|
||||
|
||||
namespace Enderton.Chapter_0
|
||||
|
||||
-- TODO
|
||||
|
||||
end Enderton.Chapter_0
|
|
@ -8,6 +8,7 @@ feasible, theorems are also formally proven in [Lean](https://leanprover.github.
|
|||
- [ ] Axler, Sheldon. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015.
|
||||
- [ ] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press, 2009.
|
||||
- [ ] Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001.
|
||||
- [ ] Enderton, Herbert B. Elements of Set Theory. New York: Academic Press, 1977.
|
||||
- [ ] Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
- [ ] Gustedt, Jens. Modern C. Shelter Island, NY: Manning Publications Co, 2020.
|
||||
- [ ] Ross, Sheldon. A First Course in Probability Theory. 8th ed. Pearson Prentice Hall, n.d.
|
||||
|
|
Loading…
Reference in New Issue