Enderton, Baby Set Theory.
parent
ed981c3892
commit
ead87350b8
|
@ -49,20 +49,23 @@ If $A$ and $B$ are sets such that for every object $t$,
|
|||
\section{Baby Set Theory}%
|
||||
\label{sec:baby-set-theory}
|
||||
|
||||
\subsection{\partial{Exercise 1}}%
|
||||
\subsection{\verified{Exercise 1}}%
|
||||
\label{sub:baby-set-theory-1}
|
||||
|
||||
Which of the following become true when "$\in$" is inserted in place of the
|
||||
blank?
|
||||
Which become true when "$\subseteq$" is inserted?
|
||||
|
||||
\subsubsection{\partial{Exercise 1a}}%
|
||||
\subsubsection{\verified{Exercise 1a}}%
|
||||
\label{ssub:baby-set-theory-1a}
|
||||
|
||||
$\{\emptyset\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_1a}
|
||||
|
||||
Because the \textit{object} $\{\emptyset\}$ is a member of the right-hand set,
|
||||
the statement is \textbf{true} in the case of "$\in$".
|
||||
|
||||
|
@ -72,13 +75,16 @@ $\{\emptyset\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1b}}%
|
||||
\subsubsection{\verified{Exercise 1b}}%
|
||||
\label{ssub:baby-set-theory-1b}
|
||||
|
||||
$\{\emptyset\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_1b}
|
||||
|
||||
Because the \textit{object} $\{\emptyset\}$ is not a member of the right-hand
|
||||
set, the statement is \textbf{false} in the case of "$\in$".
|
||||
|
||||
|
@ -87,13 +93,16 @@ $\{\emptyset\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1c}}%
|
||||
\subsubsection{\verified{Exercise 1c}}%
|
||||
\label{ssub:baby-set-theory-1c}
|
||||
|
||||
$\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_1c}
|
||||
|
||||
Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the
|
||||
right-hand set, the statement is \textbf{false} in the case of "$\in$".
|
||||
|
||||
|
@ -102,13 +111,16 @@ $\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1d}}%
|
||||
\subsubsection{\verified{Exercise 1d}}%
|
||||
\label{ssub:baby-set-theory-1d}
|
||||
|
||||
$\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_1d}
|
||||
|
||||
Because the \textit{object} $\{\{\emptyset\}\}$ is a member of the right-hand
|
||||
set, the statement is \textbf{true} in the case of "$\in$".
|
||||
|
||||
|
@ -118,13 +130,16 @@ $\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\partial{Exercise 1e}}%
|
||||
\subsubsection{\verified{Exercise 1e}}%
|
||||
\label{ssub:baby-set-theory-1e}
|
||||
|
||||
$\{\{\emptyset\}\} \_\_ \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_1e}
|
||||
|
||||
Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the
|
||||
right-hand set, the statement is \textbf{false} in the case of "$\in$".
|
||||
|
||||
|
@ -134,7 +149,7 @@ $\{\{\emptyset\}\} \_\_ \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Exercise 2}}%
|
||||
\subsection{\verified{Exercise 2}}%
|
||||
\label{sub:baby-set-theory-2}
|
||||
|
||||
Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and
|
||||
|
@ -142,6 +157,9 @@ Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_2}
|
||||
|
||||
By the \nameref{ref:principle-extensionality}, $\emptyset$ is only equal to
|
||||
$\emptyset$.
|
||||
This immediately shows it is not equal to the other two.
|
||||
|
@ -153,13 +171,16 @@ Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Exercise 3}}%
|
||||
\subsection{\verified{Exercise 3}}%
|
||||
\label{sub:baby-set-theory-3}
|
||||
|
||||
Show that if $B \subseteq C$, then $\mathscr{P} B \subseteq \mathscr{P} C$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_3}
|
||||
|
||||
Let $x \in \mathscr{P} B$.
|
||||
By definition of the \nameref{ref:powerset}, $x$ is a subset of $B$.
|
||||
By hypothesis, $B \subseteq C$.
|
||||
|
@ -169,7 +190,7 @@ Show that if $B \subseteq C$, then $\mathscr{P} B \subseteq \mathscr{P} C$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Exercise 4}}%
|
||||
\subsection{\verified{Exercise 4}}%
|
||||
\label{sub:baby-set-theory-4}
|
||||
|
||||
Assume that $x$ and $y$ are members of a set $B$.
|
||||
|
@ -177,6 +198,9 @@ Show that $\{\{x\}, \{x, y\}\} \in \mathscr{P}\mathscr{P} B.$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_4}
|
||||
|
||||
Let $x$ and $y$ be members of set $B$.
|
||||
Then $\{x\}$ and $\{x, y\}$ are subsets of $B$.
|
||||
By definition of the \nameref{ref:powerset}, $\{x\}$ and $\{x, y\}$ are
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import Mathlib.Init.Set
|
||||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.Tactic.LibrarySearch
|
||||
|
||||
/-! # Enderton.Chapter_1
|
||||
|
||||
|
@ -7,7 +9,125 @@ Introduction
|
|||
|
||||
namespace Enderton.Set.Chapter_1
|
||||
|
||||
/-! ### Exercise 1
|
||||
|
||||
Which of the following become true when "∈" is inserted in place of the blank?
|
||||
Which become true when "⊆" is inserted?
|
||||
-/
|
||||
|
||||
/--
|
||||
The `∅` does not equal the singleton set containing `∅`.
|
||||
-/
|
||||
lemma empty_ne_singleton_empty (h : ∅ = ({∅} : Set (Set α))) : False :=
|
||||
absurd h (Ne.symm $ Set.singleton_ne_empty (∅ : Set α))
|
||||
|
||||
/-- #### Exercise 1a
|
||||
|
||||
`{∅} ___ {∅, {∅}}`
|
||||
-/
|
||||
theorem exercise_1a
|
||||
: {∅} ∈ ({∅, {∅}} : Set (Set (Set α)))
|
||||
∧ {∅} ⊆ ({∅, {∅}} : Set (Set (Set α))) := ⟨by simp, by simp⟩
|
||||
|
||||
/-- #### Exercise 1b
|
||||
|
||||
`{∅} ___ {∅, {{∅}}}`
|
||||
-/
|
||||
theorem exercise_1b
|
||||
: {∅} ∉ ({∅, {{∅}}}: Set (Set (Set (Set α))))
|
||||
∧ {∅} ⊆ ({∅, {{∅}}}: Set (Set (Set (Set α)))) := by
|
||||
refine ⟨?_, by simp⟩
|
||||
intro h
|
||||
simp at h
|
||||
exact empty_ne_singleton_empty h
|
||||
|
||||
/-- #### Exercise 1c
|
||||
|
||||
`{{∅}} ___ {∅, {∅}}`
|
||||
-/
|
||||
theorem exercise_1c
|
||||
: {{∅}} ∉ ({∅, {∅}} : Set (Set (Set (Set α))))
|
||||
∧ {{∅}} ⊆ ({∅, {∅}} : Set (Set (Set (Set α)))) := ⟨by simp, by simp⟩
|
||||
|
||||
/-- #### Exercise 1d
|
||||
|
||||
`{{∅}} ___ {∅, {{∅}}}`
|
||||
-/
|
||||
theorem exercise_1d
|
||||
: {{∅}} ∈ ({∅, {{∅}}} : Set (Set (Set (Set α))))
|
||||
∧ ¬ {{∅}} ⊆ ({∅, {{∅}}} : Set (Set (Set (Set α)))) := by
|
||||
refine ⟨by simp, ?_⟩
|
||||
intro h
|
||||
simp at h
|
||||
exact empty_ne_singleton_empty h
|
||||
|
||||
/-- #### Exercise 1e
|
||||
|
||||
`{{∅}} ___ {∅, {∅, {∅}}}`
|
||||
-/
|
||||
theorem exercise_1e
|
||||
: {{∅}} ∉ ({∅, {∅, {∅}}} : Set (Set (Set (Set α))))
|
||||
∧ ¬ {{∅}} ⊆ ({∅, {∅, {∅}}} : Set (Set (Set (Set α)))) := by
|
||||
apply And.intro
|
||||
· intro h
|
||||
simp at h
|
||||
rw [Set.ext_iff] at h
|
||||
have nh := h ∅
|
||||
simp at nh
|
||||
exact empty_ne_singleton_empty nh
|
||||
· intro h
|
||||
simp at h
|
||||
rw [Set.ext_iff] at h
|
||||
have nh := h {∅}
|
||||
simp at nh
|
||||
|
||||
/-- ### Exercise 2
|
||||
|
||||
Show that no two of the three sets `∅`, `{∅}`, and `{{∅}}` are equal to each
|
||||
other.
|
||||
-/
|
||||
theorem exercise_2
|
||||
: ∅ ≠ ({∅} : Set (Set α))
|
||||
∧ ∅ ≠ ({{∅}} : Set (Set (Set α)))
|
||||
∧ {∅} ≠ ({{∅}} : Set (Set (Set α))) := by
|
||||
refine ⟨?_, ⟨?_, ?_⟩⟩
|
||||
· intro h
|
||||
exact empty_ne_singleton_empty h
|
||||
· intro h
|
||||
exact absurd h (Ne.symm $ Set.singleton_ne_empty ({∅} : Set (Set α)))
|
||||
· intro h
|
||||
simp at h
|
||||
exact empty_ne_singleton_empty h
|
||||
|
||||
/-- ### Exercise 3
|
||||
|
||||
Show that if `B ⊆ C`, then `𝓟 B ⊆ 𝓟 C`.
|
||||
-/
|
||||
theorem exercise_3 (h : B ⊆ C) : Set.powerset B ⊆ Set.powerset C := by
|
||||
unfold Set.powerset
|
||||
simp
|
||||
intro x hx
|
||||
exact Set.Subset.trans hx h
|
||||
|
||||
/-- ### Exercise 4
|
||||
|
||||
Assume that `x` and `y` are members of a set `B`. Show that
|
||||
`{{x}, {x, y}} ∈ 𝓟 𝓟 B`.
|
||||
-/
|
||||
theorem exercise_4 (x y : α) (hx : x ∈ B) (hy : y ∈ B)
|
||||
: {{x}, {x, y}} ∈ Set.powerset (Set.powerset B) := by
|
||||
unfold Set.powerset
|
||||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq]
|
||||
rw [Set.subset_def]
|
||||
intro z hz
|
||||
simp at hz
|
||||
apply Or.elim hz
|
||||
· intro h
|
||||
rwa [h, Set.mem_setOf_eq, Set.singleton_subset_iff]
|
||||
· intro h
|
||||
rw [h, Set.mem_setOf_eq]
|
||||
exact Set.union_subset
|
||||
(Set.singleton_subset_iff.mpr hx)
|
||||
(Set.singleton_subset_iff.mpr hy)
|
||||
|
||||
end Enderton.Set.Chapter_1
|
Loading…
Reference in New Issue