Add icon to distinguish Lean definitions from custom ones.
Update to pending any proofs that were using already defined Lean proofs.finite-set-exercises
parent
51e415a87f
commit
e8aa984b98
|
@ -32,7 +32,7 @@ The \textbf{characteristic function} of $S$ is the function $\mathcal{X}_S$ such
|
|||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Set/Basic}{Set.characteristic}
|
||||
\code*{Common/Set/Basic}{Set.characteristic}
|
||||
|
||||
\end{definition}
|
||||
|
||||
|
@ -160,7 +160,7 @@ A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
|||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Set/Partition}{Set.Partition}
|
||||
\code*{Common/Set/Partition}{Set.Partition}
|
||||
|
||||
\end{definition}
|
||||
|
||||
|
@ -192,7 +192,7 @@ That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
|||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Geometry/StepFunction}{Geometry.StepFunction}
|
||||
\code*{Common/Geometry/StepFunction}{Geometry.StepFunction}
|
||||
|
||||
\end{definition}
|
||||
|
||||
|
@ -239,7 +239,7 @@ It is denoted as $\bar{I}(f)$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.is\_lub\_neg\_set\_iff\_is\_glb\_set\_neg}
|
||||
|
||||
Suppose $L = \sup{S}$ and fix $x \in S$.
|
||||
|
@ -264,7 +264,7 @@ It is denoted as $\bar{I}(f)$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.exists\_isGLB}
|
||||
|
||||
Let $S$ be a nonempty set bounded below by $x$.
|
||||
|
@ -288,7 +288,7 @@ It is denoted as $\bar{I}(f)$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.exists\_pnat\_geq\_self}
|
||||
|
||||
Let $n = \abs{\ceil{x}} + 1$.
|
||||
|
@ -313,7 +313,7 @@ It is denoted as $\bar{I}(f)$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.exists\_pnat\_mul\_self\_geq\_of\_pos}
|
||||
|
||||
Let $x > 0$ and $y$ be an arbitrary real number.
|
||||
|
@ -336,7 +336,7 @@ It is denoted as $\bar{I}(f)$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq}
|
||||
|
||||
By the trichotomy of the reals, there are three cases to consider:
|
||||
|
@ -382,7 +382,7 @@ It is denoted as $\bar{I}(f)$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.forall\_pnat\_frac\_leq\_self\_leq\_imp\_eq}
|
||||
|
||||
By the trichotomy of the reals, there are three cases to consider:
|
||||
|
@ -432,7 +432,7 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.sup\_imp\_exists\_gt\_sup\_sub\_delta}
|
||||
|
||||
By definition of a \nameref{ref:supremum}, $\sup{S}$ is the least upper
|
||||
|
@ -458,7 +458,7 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.inf\_imp\_exists\_lt\_inf\_add\_delta}
|
||||
|
||||
By definition of an \nameref{ref:infimum}, $\inf{S}$ is the greatest lower
|
||||
|
@ -496,7 +496,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.sup\_minkowski\_sum\_eq\_sup\_add\_sup}
|
||||
|
||||
We prove (i) $\sup{A} + \sup{B}$ is an upper bound of $C$ and (ii)
|
||||
|
@ -567,7 +567,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.inf\_minkowski\_sum\_eq\_inf\_add\_inf}
|
||||
|
||||
We prove (i) $\inf{A} + \inf{B}$ is a lower bound of $C$ and (ii)
|
||||
|
@ -639,7 +639,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
\code{Bookshelf/Apostol/Chapter\_I\_03}
|
||||
{Apostol.Chapter\_I\_03.forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf}
|
||||
|
||||
By hypothesis, $S$ and $T$ are nonempty sets.
|
||||
|
@ -678,7 +678,7 @@ For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\leanp*{Common/Geometry/Area}{Nonnegative-Property}
|
||||
\codep*{Common/Geometry/Area}{Nonnegative-Property}
|
||||
{Nonnegative Property}
|
||||
|
||||
\end{axiom}
|
||||
|
@ -691,7 +691,7 @@ If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\leanp*{Common/Geometry/Area}{Additive-Property}
|
||||
\codep*{Common/Geometry/Area}{Additive-Property}
|
||||
{Additive Property}
|
||||
|
||||
\end{axiom}
|
||||
|
@ -704,7 +704,7 @@ If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\leanp*{Common/Geometry/Area}{Difference-Property}
|
||||
\codep*{Common/Geometry/Area}{Difference-Property}
|
||||
{Difference Property}
|
||||
|
||||
\end{axiom}
|
||||
|
@ -717,7 +717,7 @@ If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\leanp*{Common/Geometry/Area}{Invariance-Under-Congruence}
|
||||
\codep*{Common/Geometry/Area}{Invariance-Under-Congruence}
|
||||
{Invariance Under Congruence}
|
||||
|
||||
\end{axiom}
|
||||
|
@ -730,7 +730,7 @@ If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\leanp*{Common/Geometry/Area}{Choice-of-Scale}
|
||||
\codep*{Common/Geometry/Area}{Choice-of-Scale}
|
||||
{Choice of Scale}
|
||||
|
||||
\end{axiom}
|
||||
|
@ -750,7 +750,7 @@ If there is one and only one number $c$ which satisfies the inequalities
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\leanp*{Common/Geometry/Area}{Exhaustion-Property}
|
||||
\codep*{Common/Geometry/Area}{Exhaustion-Property}
|
||||
{Exhaustion Property}
|
||||
|
||||
\end{axiom}
|
||||
|
@ -1340,7 +1340,7 @@ $\floor{x + n} = \floor{x} + n$ for every integer $n$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4a}
|
||||
|
||||
Let $x$ be a real number and $n$ an integer.
|
||||
|
@ -1366,10 +1366,10 @@ $\floor{-x} =
|
|||
|
||||
\statementpadding
|
||||
|
||||
\lean*{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code*{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4b\_1}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4b\_2}
|
||||
|
||||
There are two cases to consider:
|
||||
|
@ -1409,7 +1409,7 @@ $\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4c}
|
||||
|
||||
Rewrite $x$ and $y$ as the sum of their floor and fractional components:
|
||||
|
@ -1453,7 +1453,7 @@ $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4d}
|
||||
|
||||
This is immediately proven by applying \nameref{sub:hermites-identity}.
|
||||
|
@ -1467,7 +1467,7 @@ $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4e}
|
||||
|
||||
This is immediately proven by applying \nameref{sub:hermites-identity}.
|
||||
|
@ -1484,7 +1484,7 @@ State and prove such a generalization.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_5}
|
||||
|
||||
We prove that for all natural numbers $n$ and real numbers $x$, the following
|
||||
|
@ -1710,7 +1710,7 @@ Now apply Exercises 4(a) and (b) to the bracket on the right.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
\code{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_7b}
|
||||
|
||||
Let $n = 1, \ldots, b - 1$.
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -9,6 +9,34 @@ Axioms and Operations
|
|||
|
||||
namespace Enderton.Set.Chapter_2
|
||||
|
||||
/-! #### Commutative Laws
|
||||
|
||||
For any sets `A` and `B`,
|
||||
```
|
||||
A ∪ B = B ∪ A
|
||||
A ∩ B = B ∩ A
|
||||
```
|
||||
-/
|
||||
|
||||
#check Set.union_comm
|
||||
|
||||
theorem commutative_law_i (A B : Set α)
|
||||
: A ∪ B = B ∪ A := calc A ∪ B
|
||||
_ = { x | x ∈ A ∨ x ∈ B } := rfl
|
||||
_ = { x | x ∈ B ∨ x ∈ A } := by
|
||||
ext
|
||||
exact or_comm
|
||||
_ = B ∪ A := rfl
|
||||
|
||||
#check Set.inter_comm
|
||||
|
||||
theorem commutative_law_ii (A B : Set α)
|
||||
: A ∩ B = B ∩ A := calc A ∩ B
|
||||
_ = { x | x ∈ A ∧ x ∈ B } := rfl
|
||||
_ = { x | x ∈ B ∧ x ∈ A } := by
|
||||
ext
|
||||
exact and_comm
|
||||
_ = B ∩ A := rfl
|
||||
|
||||
/-- #### Exercise 2.1
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Common/Real/Sequence/Arithmetic}
|
||||
\code{Common/Real/Sequence/Arithmetic}
|
||||
{Real.Arithmetic.sum\_recursive\_closed}
|
||||
|
||||
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
||||
|
@ -84,7 +84,7 @@ Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Common/Real/Sequence/Geometric}
|
||||
\code{Common/Real/Sequence/Geometric}
|
||||
{Real.Geometric.sum\_recursive\_closed}
|
||||
|
||||
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
||||
|
|
|
@ -40,28 +40,26 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
|
|||
<li>
|
||||
<span style="color:darkgray">Dark gray statements </span> are
|
||||
reserved for definitions and axioms that have been encoded in LaTeX.
|
||||
A corresponding reference to a definition/axiom in Lean may also be
|
||||
provided.
|
||||
A reference to a definition in Lean may also be provided.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:teal">Teal statements </span> are reserved for
|
||||
statements, theorems, lemmas, etc. that have been proven in both
|
||||
LaTeX and Lean.
|
||||
statements, theorems, lemmas, etc. that have been proven in LaTeX
|
||||
and have a corresponding proof in Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:olive">Olive statements </span> are reserved for
|
||||
statements, theorems, lemmas, etc. that have been proven in LaTeX
|
||||
and will <i>not </i> be proven in Lean.
|
||||
statements, theorems, lemmas, etc. that have been proven in LaTeX.
|
||||
A reference to a statement in Lean may also be provided.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:fuchsia">Fuchsia statements </span> are reserved
|
||||
for definitions, axioms, statements, theorems, lemmas, etc. that
|
||||
have been proven or encoded in LaTeX and <i>will </i> be encoded in
|
||||
Lean.
|
||||
for statements, theorems, lemmas, etc. that have been proven in
|
||||
LaTeX and <i>will </i> have a corresponding proof in Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:maroon">Maroon </span> serves as a catch-all for
|
||||
all statements that don't fit the above categorizations. Incomplete
|
||||
statements that don't fit the above categorizations. Incomplete
|
||||
definitions, statements without proof, etc. belong here.
|
||||
</li>
|
||||
</ul>
|
||||
|
|
38
preamble.tex
38
preamble.tex
|
@ -9,7 +9,9 @@
|
|||
\usepackage{mathabx, mathrsfs}
|
||||
\usepackage{soul}
|
||||
\usepackage{stmaryrd}
|
||||
\usepackage[usenames,dvipsnames]{xcolor}
|
||||
% Must load `xcolor` before `tikz`.
|
||||
\usepackage[dvipsnames]{xcolor}
|
||||
\usepackage{tikz}
|
||||
% `hyperref` comes after `xr-hyper`.
|
||||
\usepackage{xr-hyper}
|
||||
\usepackage{hyperref}
|
||||
|
@ -42,8 +44,17 @@
|
|||
\label{#1}%
|
||||
\hypertarget{#1}{}}
|
||||
|
||||
% Denote whether we are working with a standard/Mathlib statement (lean) or a
|
||||
% custom one (code).
|
||||
\newcommand\@leanlink[4]{%
|
||||
\textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1/#2.html\##3}{#4}}
|
||||
\textcolor{blue}{\raisebox{-4.5pt}{%
|
||||
\tikz{\draw (0, 0) node[yscale=-1,xscale=1] {\faFont};}}}%
|
||||
{-\;}\href{#1/#2.html\##3}{#4}}
|
||||
|
||||
\newcommand\@codelink[4]{%
|
||||
\textcolor{blue}{\raisebox{-4.5pt}{%
|
||||
\tikz{\draw (0, 0) node[] {\faCodeBranch};}}}%
|
||||
{-\;}\href{#1/#2.html\##3}{#4}}
|
||||
|
||||
% Reference to an anchor of Lean documentation.
|
||||
\newcommand\leanref[3]{%
|
||||
|
@ -51,22 +62,43 @@
|
|||
\WithSuffix\newcommand\leanref*[3]{%
|
||||
\@leanlink{#1}{#2}{#3}{#3}}
|
||||
|
||||
% Variant that allows customizing display text.
|
||||
\newcommand\coderef[3]{%
|
||||
\@codelink{#1}{#2}{#3}{#3}\vspace{10pt}}
|
||||
\WithSuffix\newcommand\coderef*[3]{%
|
||||
\@codelink{#1}{#2}{#3}{#3}}
|
||||
|
||||
% Variants that allows customizing display text.
|
||||
\newcommand\leanpref[4]{%
|
||||
\@leanlink{#1}{#2}{#3}{#4}\vspace{10pt}}
|
||||
\WithSuffix\newcommand\leanpref*[4]{%
|
||||
\@leanlink{#1}{#2}{#3}{#4}}
|
||||
|
||||
\newcommand\codepref[4]{%
|
||||
\@codelink{#1}{#2}{#3}{#4}\vspace{10pt}}
|
||||
\WithSuffix\newcommand\codepref*[4]{%
|
||||
\@codelink{#1}{#2}{#3}{#4}}
|
||||
|
||||
% Macro to build all Lean related commands relative to a specified directory.
|
||||
\newcommand\makeleancommands[1]{%
|
||||
\newcommand\lean[2]{%
|
||||
\leanref{#1}{##1}{##2}}
|
||||
\WithSuffix\newcommand\lean*[2]{%
|
||||
\leanref*{#1}{##1}{##2}}
|
||||
|
||||
\newcommand\code[2]{%
|
||||
\coderef{#1}{##1}{##2}}
|
||||
\WithSuffix\newcommand\code*[2]{%
|
||||
\coderef*{#1}{##1}{##2}}
|
||||
|
||||
\newcommand\leanp[3]{%
|
||||
\leanpref{#1}{##1}{##2}{##3}}
|
||||
\WithSuffix\newcommand\leanp*[3]{%
|
||||
\leanpref*{#1}{##1}{##2}{##3}}
|
||||
|
||||
\newcommand\codep[3]{%
|
||||
\codepref{#1}{##1}{##2}{##3}}
|
||||
\WithSuffix\newcommand\codep*[3]{%
|
||||
\codepref*{#1}{##1}{##2}{##3}}
|
||||
}
|
||||
|
||||
% ========================================
|
||||
|
|
Loading…
Reference in New Issue