Enderton. Draft theorems/exercises on arithmetic section.

finite-set-exercises
Joshua Potter 2023-08-01 13:17:30 -06:00
parent fc3b659613
commit e7cd189557
1 changed files with 178 additions and 5 deletions

View File

@ -22,6 +22,28 @@
\chapter{Reference}% \chapter{Reference}%
\hyperlabel{chap:reference} \hyperlabel{chap:reference}
\section{\defined{Addition}}%
\label{ref:addition}
For each $m \in \omega$, there exists (by the
\nameref{sub:recursion-theorem-natural-numbers}) a unique
\nameref{ref:function} $A_m \colon \omega \rightarrow \omega$ for which
\begin{align*}
A_m(0) & = m, \\
A_m(n^+) & = A_m(n)^+ & \text{for } n \text{ in } \omega.
\end{align*}
\textbf{Addition} ($+$) is the \nameref{ref:binary-operation} on $\omega$ such
that for any $m$ and $n$ in $\omega$, $$m + n = A_m(n).$$
Thus when written as a \nameref{ref:relation},
$$+ = \{\pair{\pair{m, n}, p} \mid
m \in \omega \land n \in \omega \land p = A_m(n)\}.$$
\begin{definition}
\lean*{Init/Prelude}{Add.add}
\end{definition}
\section{\defined{Axiom of Choice, First Form}}% \section{\defined{Axiom of Choice, First Form}}%
\hyperlabel{ref:axiom-of-choice-1} \hyperlabel{ref:axiom-of-choice-1}
@ -46,6 +68,12 @@ For any set $I$ and any function $H$ with domain $I$, if $H(i) \neq \emptyset$
\end{axiom} \end{axiom}
\section{\defined{Binary Operation}}%
\hyperlabel{ref:binary-operation}
A \textbf{binary operation} on a set $A$ is a \nameref{ref:function} from
$A \times A$ into $A$.
\section{\defined{Cartesian Product}}% \section{\defined{Cartesian Product}}%
\hyperlabel{ref:cartesian-product} \hyperlabel{ref:cartesian-product}
@ -341,6 +369,25 @@ A \textbf{linear ordering} on $A$ (also called a \textbf{total ordering} on $A$)
\end{definition} \end{definition}
\section{\defined{Multiplication}}%
\hyperlabel{sec:multiplication}
For each $m \in \omega$, there exists (by the
\nameref{sub:recursion-theorem-natural-numbers}) a unique
\nameref{ref:function} $M_m \colon \omega \rightarrow \omega$ for which
\begin{align*}
M_m(0) & = 0, \\
M_m(n^+) = M_m(n) + m.
\end{align*}
\textbf{Multiplication} ($\cdot$) is the \nameref{ref:binary-operation} on
$\omega$ such that for any $m$ and $n$ in $\omega$, $$m \cdot n = M_m(n).$$
\begin{definition}
\lean*{Init/Prelude}{Mul.mul}
\end{definition}
\section{\defined{Natural Number}}% \section{\defined{Natural Number}}%
\hyperlabel{ref:natural-number} \hyperlabel{ref:natural-number}
@ -6249,7 +6296,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
$\dom{h} = \omega$, and (iv) $h$ is unique. $\dom{h} = \omega$, and (iv) $h$ is unique.
\paragraph{(i)}% \paragraph{(i)}%
\label{par:recursion-theorem-natural-numbers-i} \hyperlabel{par:recursion-theorem-natural-numbers-i}
We prove that $h$ is a function. We prove that $h$ is a function.
Consider set Consider set
@ -6257,7 +6304,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
We show (1) that $0 \in S$ and (2) if $n \in S$ then $n^+ \in S$. We show (1) that $0 \in S$ and (2) if $n \in S$ then $n^+ \in S$.
\subparagraph{(1)}% \subparagraph{(1)}%
\label{spar:recursion-theorem-natural-numbers-i-1} \hyperlabel{spar:recursion-theorem-natural-numbers-i-1}
Suppose $0 \in \dom{h}$. Suppose $0 \in \dom{h}$.
By construction, there must exist some $y_1 \in A$ and acceptable function By construction, there must exist some $y_1 \in A$ and acceptable function
@ -6269,7 +6316,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
Therefore $0 \in S$. Therefore $0 \in S$.
\subparagraph{(2)}% \subparagraph{(2)}%
\label{spar:recursion-theorem-natural-numbers-i-2} \hyperlabel{spar:recursion-theorem-natural-numbers-i-2}
Suppose $n$ and $n^+$ are members of $\dom{h}$. Suppose $n$ and $n^+$ are members of $\dom{h}$.
By construction, there must exist some $y_1 \in A$ and acceptable function By construction, there must exist some $y_1 \in A$ and acceptable function
@ -6294,7 +6341,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
In other words, $h$ is a function. In other words, $h$ is a function.
\paragraph{(ii)}% \paragraph{(ii)}%
\label{par:recursion-theorem-natural-numbers-ii} \hyperlabel{par:recursion-theorem-natural-numbers-ii}
We now prove $h \in H$, i.e. $h$ is an acceptable function. We now prove $h \in H$, i.e. $h$ is an acceptable function.
It trivially holds that $\dom{h} \subseteq \omega$ and It trivially holds that $\dom{h} \subseteq \omega$ and
@ -6321,7 +6368,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
Hence $h \in H$. Hence $h \in H$.
\paragraph{(iii)}% \paragraph{(iii)}%
\label{par:recursion-theorem-natural-numbers-iii} \hyperlabel{par:recursion-theorem-natural-numbers-iii}
We now prove that $\dom{h} = \omega$. We now prove that $\dom{h} = \omega$.
We show that (1) $0 \in \dom{h}$ and (2) if $n \in \dom{h}$ then We show that (1) $0 \in \dom{h}$ and (2) if $n \in \dom{h}$ then
@ -6414,6 +6461,74 @@ Show that $<_L$ is a linear ordering on $A \times B$.
\end{proof} \end{proof}
\section{Arithmetic}%
\hyperlabel{sec:arithmetic}
\subsection{\sorry{Theorem 4I}}
\hyperlabel{sub:theorem-4i}
\begin{theorem}[4I]
For natural numbers $m$ and $n$,
\begin{align*}
m + 0 & = m, \\
m + n^+ & = (m + n)^+.
\end{align*}
\end{theorem}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 4J}}
\hyperlabel{sub:theorem-4j}
\begin{theorem}[4J]
For natural numbers $m$ and $n$,
\begin{align*}
m \cdot 0 & = 0, \\
m \cdot n^+ & = m \cdot n + m.
\end{align*}
\end{theorem}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 4K}}
\hyperlabel{sub:theorem-4k}
\begin{theorem}[4K]
The following identities hold for all natural numbers.
\begin{enumerate}
\item Associative law for addition
$$m + (n + p) = (m + n) + p.$$
\item Commutative law for addition
$$m + n = n + m.$$
\item Distributive law
$$m \cdot (n + p) = m \cdot n + m \cdot p.$$
\item Associative law for multiplication
$$m \cdot (n \cdot p) = (m \cdot n) \cdot p.$$
\item Commutative law for multiplication
$$m \cdot n = n \cdot m.$$
\end{enumerate}
\end{theorem}
\begin{proof}
TODO
\end{proof}
\section{Exercises 4}% \section{Exercises 4}%
\hyperlabel{sec:exercises-4} \hyperlabel{sec:exercises-4}
@ -6781,4 +6896,62 @@ Formulate an analogue to Exercise 9 for a function
\end{proof} \end{proof}
\subsection{\sorry{Exercise 4.13}}%
\hyperlabel{sub:exercise-4.13}
Let $m$ and $n$ be natural numbers such that $m \cdot n = 0$.
Show that either $m = 0$ or $n = 0$.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.14}}%
\hyperlabel{sub:exercise-4.14}
Call a natural number \textit{even} if it has the form $2 \cdot m$ for some $m$.
Call it \textit{odd} if it has the form $(2 \cdot p) + 1$ for some $p$.
Show that each natural number is either even or odd, but never both.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.15}}%
\hyperlabel{sub:exercise-4.15}
Complete the proof of part (1) of \nameref{sub:theorem-4k}.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.16}}%
\hyperlabel{sub:exercise-4.16}
Complete the proof of part (5) of \nameref{sub:theorem-4k}.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.17}}%
\hyperlabel{sub:exercise-4.17}
Prove that $m^{n+p} = m^n \cdot m^p$.
\begin{proof}
TODO
\end{proof}
\end{document} \end{document}