Add hyperref linking and fix other refs.
parent
5991554fcb
commit
e3205a1e5d
File diff suppressed because it is too large
Load Diff
|
@ -13,7 +13,7 @@
|
|||
\renewcommand\thechapter{R}
|
||||
|
||||
\chapter{Reference}%
|
||||
\label{chap:reference}
|
||||
\hyperlabel{chap:reference}
|
||||
|
||||
\endgroup
|
||||
|
||||
|
@ -21,10 +21,10 @@
|
|||
\setcounter{chapter}{0}
|
||||
\addtocounter{chapter}{-1}
|
||||
\chapter{Useful Facts About Sets}%
|
||||
\label{chap:useful-facts-about-sets}
|
||||
\hyperlabel{chap:useful-facts-about-sets}
|
||||
|
||||
\section{\sorry{Lemma 0A}}%
|
||||
\label{sec:lemma-0a}
|
||||
\hyperlabel{sec:lemma-0a}
|
||||
|
||||
Assume that $\langle x_1, \ldots, x_m \rangle =
|
||||
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -10,15 +10,15 @@
|
|||
\tableofcontents
|
||||
|
||||
\section{Summations}%
|
||||
\label{sec:summations}
|
||||
\hyperlabel{sec:summations}
|
||||
|
||||
\subsection{\verified{Arithmetic Series}}%
|
||||
\label{sub:sum-arithmetic-series}
|
||||
\hyperlabel{sub:sum-arithmetic-series}
|
||||
|
||||
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
||||
Then for some $n \in \mathbb{N}$,
|
||||
\begin{equation}
|
||||
\label{sub:sum-arithmetic-series-eq1}
|
||||
\hyperlabel{sub:sum-arithmetic-series-eq1}
|
||||
\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.
|
||||
\end{equation}
|
||||
|
||||
|
@ -30,7 +30,7 @@ Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
|||
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
||||
By definition, for all $k \in \mathbb{N}$,
|
||||
\begin{equation}
|
||||
\label{sub:sum-arithmetic-series-eq2}
|
||||
\hyperlabel{sub:sum-arithmetic-series-eq2}
|
||||
a_k = (a_0 + kd).
|
||||
\end{equation}
|
||||
Define predicate $P(n)$ as "identity \eqref{sub:sum-arithmetic-series-eq1}
|
||||
|
@ -73,12 +73,12 @@ Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
|||
\end{proof}
|
||||
|
||||
\subsection{\verified{Geometric Series}}%
|
||||
\label{sub:sum-geometric-series}
|
||||
\hyperlabel{sub:sum-geometric-series}
|
||||
|
||||
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
||||
Then for some $n \in \mathbb{N}$,
|
||||
\begin{equation}
|
||||
\label{sub:sum-geometric-series-eq1}
|
||||
\hyperlabel{sub:sum-geometric-series-eq1}
|
||||
\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.
|
||||
\end{equation}
|
||||
|
||||
|
@ -90,7 +90,7 @@ Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
|||
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
||||
By definition, for all $k \in \mathbb{N}$,
|
||||
\begin{equation}
|
||||
\label{sub:sum-geometric-series-eq2}
|
||||
\hyperlabel{sub:sum-geometric-series-eq2}
|
||||
a_k = a_0r^k.
|
||||
\end{equation}
|
||||
Define predicate $P(n)$ as "identity \eqref{sub:sum-geometric-series-eq1}
|
||||
|
|
|
@ -38,6 +38,9 @@
|
|||
|
||||
\hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue}
|
||||
\newcommand{\textref}[1]{\text{\nameref{#1}}}
|
||||
\newcommand{\hyperlabel}[1]{%
|
||||
\label{#1}%
|
||||
\hypertarget{#1}{}}
|
||||
|
||||
\newcommand\@leanlink[4]{%
|
||||
\textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1/#2.html\##3}{#4}}
|
||||
|
|
Loading…
Reference in New Issue