Add links to different books.

pigeonhole-redux
Joshua Potter 2023-09-26 09:55:04 -06:00
parent 2a85d526d7
commit e29795c55e
6 changed files with 76 additions and 8 deletions

View File

@ -1,2 +1,16 @@
import Bookshelf.Apostol.Chapter_I_03 import Bookshelf.Apostol.Chapter_I_03
import Bookshelf.Apostol.Chapter_1_11 import Bookshelf.Apostol.Chapter_1_11
/-! # Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra
## Apostol, Tom M.
### LaTeX
Full set of [proofs and exercises](Bookshelf/Apostol.pdf).
### Lean
* [Chapter I.03: A Set of Axioms for the Real-Number System](Bookshelf/Apostol/Chapter_I_03.html)
* [Chapter 1.11: Exercises](Bookshelf/Apostol/Chapter_1_11.html)
-/

View File

@ -4,3 +4,17 @@ import Bookshelf.Avigad.Chapter_4
import Bookshelf.Avigad.Chapter_5 import Bookshelf.Avigad.Chapter_5
import Bookshelf.Avigad.Chapter_7 import Bookshelf.Avigad.Chapter_7
import Bookshelf.Avigad.Chapter_8 import Bookshelf.Avigad.Chapter_8
/-! # Theorem Proving in Lean
## Avigad, Jeremy.
### Lean
* [Chapter 2: Dependent Type Theory](Bookshelf/Avigad/Chapter_2.html)
* [Chapter 3: Propositions and Proofs](Bookshelf/Avigad/Chapter_3.html)
* [Chapter 4: Quantifiers and Equality](Bookshelf/Avigad/Chapter_4.html)
* [Chapter 5: Tactics](Bookshelf/Avigad/Chapter_5.html)
* [Chapter 7: Inductive Types](Bookshelf/Avigad/Chapter_7.html)
* [Chapter 8: Induction and Recursion](Bookshelf/Avigad/Chapter_8.html)
-/

View File

@ -1 +1,14 @@
import Bookshelf.Enderton.Logic.Chapter_1 import Bookshelf.Enderton.Logic.Chapter_1
/-! # A Mathematical Introduction to Logic
## Enderton, Herbert B.
### LaTeX
Full set of [proofs and exercises](Bookshelf/Enderton/Logic.pdf).
### Lean
* [Chapter 1: Sentential Logic](Bookshelf/Enderton/Logic/Chapter_1.html)
-/

View File

@ -5,3 +5,20 @@ import Bookshelf.Enderton.Set.Chapter_4
import Bookshelf.Enderton.Set.Chapter_6 import Bookshelf.Enderton.Set.Chapter_6
import Bookshelf.Enderton.Set.OrderedPair import Bookshelf.Enderton.Set.OrderedPair
import Bookshelf.Enderton.Set.Relation import Bookshelf.Enderton.Set.Relation
/-! # Elements of Set Theory
## Enderton, Herbert B.
### LaTeX
Full set of [proofs and exercises](Bookshelf/Enderton/Set.pdf).
### Lean
* [Chapter 1: Introduction](Bookshelf/Enderton/Set/Chapter_1.html)
* [Chapter 2: Axioms and Operations](Bookshelf/Enderton/Set/Chapter_2.html)
* [Chapter 3: Relations and Functions](Bookshelf/Enderton/Set/Chapter_3.html)
* [Chapter 4: Natural Numbers](Bookshelf/Enderton/Set/Chapter_4.html)
* [Chapter 6: Cardinal Numbers and the Axiom of Choice](Bookshelf/Enderton/Set/Chapter_6.html)
-/

View File

@ -1 +1,10 @@
import Bookshelf.Fraleigh.Chapter_1 import Bookshelf.Fraleigh.Chapter_1
/-! # A First Course in Abstract Algebra
## Fraleigh, John B.
### Lean
* [Chapter 1: Introduction and Examples](Bookshelf/Fraleigh/Chapter_1.html)
-/

View File

@ -24,14 +24,15 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
<h2>In Progress</h2> <h2>In Progress</h2>
<ul> <ul>
<li>Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.</li> <li><a href={s!"{← getRoot}Bookshelf/Apostol.html"}>Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.</a></li>
<li>Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001.</li> <li><a href={s!"{← getRoot}Bookshelf/Enderton/Logic.html"}>Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001.</a></li>
<li>Enderton, Herbert B. Elements of Set Theory. New York: Academic Press, 1977.</li> <li><a href={s!"{← getRoot}Bookshelf/Enderton/Set.html"}>Enderton, Herbert B. Elements of Set Theory. New York: Academic Press, 1977.</a></li>
<li><a href={s!"{← getRoot}Bookshelf/Fraleigh.html"}>Fraleigh, John B. A First Course in Abstract Algebra, n.d.</a></li>
</ul> </ul>
<h2>Complete</h2> <h2>Complete</h2>
<ul> <ul>
<li>Avigad, Jeremy. Theorem Proving in Lean, n.d.</li> <li><a href={s!"{← getRoot}Bookshelf/Avigad.html"}>Avigad, Jeremy. Theorem Proving in Lean, n.d.</a></li>
</ul> </ul>
<h2>Pending</h2> <h2>Pending</h2>