Have definitions at top in "glossary" chapter.
parent
b413998f6b
commit
e1af33e805
|
@ -17,6 +17,53 @@
|
||||||
|
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
|
|
||||||
|
\chapter{Glossary}%
|
||||||
|
\label{chap:glossary}
|
||||||
|
|
||||||
|
\section{\defined{Partition}}%
|
||||||
|
\label{sec:def-partition}
|
||||||
|
|
||||||
|
Let $[a, b]$ be a closed interval decomposed into $n$ subintervals by inserting
|
||||||
|
$n - 1$ points of subdivision, say $x_1$, $x_2$, $\ldots$, $x_{n-1}$, subject
|
||||||
|
only to the restriction
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:partition-eq1}
|
||||||
|
a < x_1 < x_2 < \cdots < x_{n-1} < b.
|
||||||
|
\end{equation}
|
||||||
|
It is convenient to denote the point $a$ itself by $x_0$ and the point $b$ by
|
||||||
|
$x_n$.
|
||||||
|
A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
||||||
|
\textbf{partition} $P$ of $[a, b]$, and we use the symbol
|
||||||
|
$$P = \{x_0, x_1, \ldots, x_n\}$$ to designate this partition.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean{Common/Set/Intervals/Partition}{Set.Intervals.Partition}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\defined{Step Function}}%
|
||||||
|
\label{sec:def-step-function}
|
||||||
|
|
||||||
|
A function $s$, whose domain is a closed interval $[a, b]$, is called a step
|
||||||
|
function if there is a \nameref{sec:def-partition}
|
||||||
|
$P = \{x_0, x_1, \ldots, x_n\}$ of $[a b]$ such that $s$ is constant on each
|
||||||
|
open subinterval of $P$.
|
||||||
|
That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
||||||
|
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
|
||||||
|
Step functions are sometimes called piecewise constant functions.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\noindent
|
||||||
|
\textit{Note:} At each of the endpoints $x_{k-1}$ and $x_k$ the function must
|
||||||
|
have some well-defined value, but this need not be the same as $s_k$.
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean{Common/Set/Intervals/StepFunction}{Set.Intervals.StepFunction}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\chapter{A Set of Axioms for the Real-Number System}%
|
\chapter{A Set of Axioms for the Real-Number System}%
|
||||||
\label{chap:set-axioms-real-number-system}
|
\label{chap:set-axioms-real-number-system}
|
||||||
|
|
||||||
|
@ -1085,52 +1132,6 @@ Prove that the set function $n$ satisfies the first three axioms for area.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\chapter{Partitions and Step Functions}%
|
|
||||||
\label{chap:partitions-step-functions}
|
|
||||||
|
|
||||||
\section{\defined{Partition}}%
|
|
||||||
\label{sec:partition}
|
|
||||||
|
|
||||||
Let $[a, b]$ be a closed interval decomposed into $n$ subintervals by inserting
|
|
||||||
$n - 1$ points of subdivision, say $x_1$, $x_2$, $\ldots$, $x_{n-1}$, subject
|
|
||||||
only to the restriction
|
|
||||||
\begin{equation}
|
|
||||||
\label{sec:partition-eq1}
|
|
||||||
a < x_1 < x_2 < \cdots < x_{n-1} < b.
|
|
||||||
\end{equation}
|
|
||||||
It is convenient to denote the point $a$ itself by $x_0$ and the point $b$ by
|
|
||||||
$x_n$.
|
|
||||||
A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
|
||||||
\textbf{partition} $P$ of $[a, b]$, and we use the symbol
|
|
||||||
$$P = \{x_0, x_1, \ldots, x_n\}$$ to designate this partition.
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
|
|
||||||
\lean{Common/Set/Intervals/Partition}{Set.Intervals.Partition}
|
|
||||||
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\section{\defined{Step Function}}%
|
|
||||||
\label{sec:step-function}
|
|
||||||
|
|
||||||
A function $s$, whose domain is a closed interval $[a, b]$, is called a step
|
|
||||||
function if there is a \nameref{sec:partition} $P = \{x_0, x_1, \ldots, x_n\}$
|
|
||||||
of $[a b]$ such that $s$ is constant on each open subinterval of $P$.
|
|
||||||
That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
|
||||||
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
|
|
||||||
Step functions are sometimes called piecewise constant functions.
|
|
||||||
|
|
||||||
\vspace{8pt}
|
|
||||||
\noindent
|
|
||||||
\textit{Note:} At each of the endpoints $x_{k-1}$ and $x_k$ the function must
|
|
||||||
have some well-defined value, but this need not be the same as $s_k$.
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
|
|
||||||
\lean{Common/Set/Intervals/StepFunction}{Set.Intervals.StepFunction}
|
|
||||||
|
|
||||||
\end{definition}
|
|
||||||
|
|
||||||
\chapter{Exercises 1.11}%
|
\chapter{Exercises 1.11}%
|
||||||
\label{chap:exercises-1-11}
|
\label{chap:exercises-1-11}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue