Draft up Exercises 1.11.
parent
2ec4611309
commit
df1537b71a
|
@ -1,6 +1,7 @@
|
|||
import Bookshelf.Real.Basic
|
||||
import Bookshelf.Real.Function
|
||||
import Bookshelf.Real.Geometry
|
||||
import Bookshelf.Real.Int
|
||||
import Bookshelf.Real.Rational
|
||||
import Bookshelf.Real.Sequence
|
||||
import Bookshelf.Real.Set
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
import Mathlib.Data.Real.Basic
|
||||
|
||||
namespace Real
|
||||
|
||||
/--
|
||||
Check whether a real number is an integer.
|
||||
-/
|
||||
def isInt (x : ℝ) := x = Int.floor x
|
||||
|
||||
end Real
|
|
@ -1 +1,2 @@
|
|||
import Exercises.Apostol.Chapter_I_3
|
||||
import Exercises.Apostol.Chapter_I_03
|
||||
import Exercises.Apostol.Chapter_1_11
|
|
@ -0,0 +1,75 @@
|
|||
import Bookshelf.Real.Int
|
||||
import Mathlib.Data.Real.Basic
|
||||
|
||||
/-! # Exercises.Apostol.Exercises_1_11 -/
|
||||
|
||||
namespace Exercises.Apostol.Exercises_1_11
|
||||
|
||||
/-! ## Exercise 4
|
||||
|
||||
Prove that the greatest-integer function has the properties indicated.
|
||||
-/
|
||||
|
||||
/-- ### Exercise 4a
|
||||
|
||||
`⌊x + n⌋ = ⌊x⌋ + n` for every integer `n`.
|
||||
-/
|
||||
theorem exercise_4a (x : ℝ) (n : ℤ) : ⌊x + n⌋ = ⌊x⌋ + n := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 4b
|
||||
|
||||
`⌊-x⌋ = -⌊x⌋` if `x` is an integer.
|
||||
`⌊-x⌋ = -⌊x⌋ - 1` otherwise.
|
||||
-/
|
||||
theorem exercise_4b (x : ℝ)
|
||||
: (Real.isInt x → ⌊-x⌋ = -⌊x⌋)
|
||||
∨ (¬Real.isInt x → ⌊-x⌋ = -⌊x⌋ - 1) := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 4c
|
||||
|
||||
`⌊x + y⌋ = ⌊x⌋ + ⌊y⌋` or `⌊x⌋ + ⌊y⌋ + 1`.
|
||||
-/
|
||||
theorem exercise_4c (x y : ℝ)
|
||||
: ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ ∨ ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + 1 := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 4d
|
||||
|
||||
`⌊2x⌋ = ⌊x⌋ + ⌊x + 1/2⌋`
|
||||
-/
|
||||
theorem exercise_4d (x : ℝ)
|
||||
: ⌊2 * x⌋ = ⌊x⌋ + ⌊x + 1/2⌋ := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 4e
|
||||
|
||||
`⌊3x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋`
|
||||
-/
|
||||
theorem exercise_4e (x : ℝ)
|
||||
: ⌊3 * x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋ := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 5
|
||||
|
||||
The formulas in Exercises 4(d) and 4(e) suggest a generalization for `⌊nx⌋`.
|
||||
State and prove such a generalization.
|
||||
-/
|
||||
theorem exercise_5 (n : ℕ) (x : ℝ)
|
||||
: ⌊n * x⌋ = 10 := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 7b
|
||||
|
||||
If `a` and `b` are positive integers with no common factor, we have the formula
|
||||
`Σ_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
||||
left is understood to be `0`.
|
||||
|
||||
Derive the result analytically as follows: By changing the index of summation,
|
||||
note that `Σ_{n=1}^{b-1} ⌊na / b⌋ = Σ_{n=1}^{b-1} ⌊a(b - n) / b⌋`. Now apply
|
||||
Exercises 4(a) and (b) to the bracket on the right.
|
||||
-/
|
||||
theorem exercise_7b : True := sorry
|
||||
|
||||
end Exercises.Apostol.Exercises_1_11
|
|
@ -0,0 +1,163 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
|
||||
\input{../../preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Exercises/Apostol/Exercises\_1\_11}
|
||||
{Exercises.Apostol.Exercises\_1\_11.#1}
|
||||
{Exercises\_1\_11.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\section{Exercise 4}%
|
||||
\label{sec:exercise-4}
|
||||
|
||||
Prove that the greatest-integer function has the properties indicated:
|
||||
|
||||
\subsection{Exercise 4a}%
|
||||
\label{sub:exercise-4a}
|
||||
|
||||
$\floor{x + n} = \floor{x} + n$ for every integer $n$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_4a}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 4b}%
|
||||
\label{sub:exercise-4b}
|
||||
|
||||
$\floor{-x} =
|
||||
\begin{cases}
|
||||
-\floor{x} & \text{if } x \text{ is an integer}, \\
|
||||
-\floor{x} - 1 & \text{otherwise}.
|
||||
\end{cases}$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_4b}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 4c}%
|
||||
\label{sub:exercise-4c}
|
||||
|
||||
$\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_4c}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 4d}%
|
||||
\label{sub:exercise-4d}
|
||||
|
||||
$\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_4d}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 4e}%
|
||||
\label{sub:exercise-4e}
|
||||
|
||||
$\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_4e}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercise 5}%
|
||||
\label{sec:exercise-5}
|
||||
|
||||
The formulas in Exercises 4(d) and 4(e) suggest a generalization for
|
||||
$\floor{nx}$.
|
||||
State and prove such a generalization.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\link{exercise\_5}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercise 6}%
|
||||
\label{sec:exercise-6}
|
||||
|
||||
Recall that a lattice point $(x, y)$ in the plane is one whose coordinates are
|
||||
integers.
|
||||
Let $f$ be a nonnegative function whose domain is the interval $[a, b]$, where
|
||||
$a$ and $b$ are integers, $a < b$.
|
||||
Let $S$ denote the set of points $(x, y)$ satisfying $a \leq x \leq b$,
|
||||
$0 < y \leq f(x)$.
|
||||
Prove that the number of lattice points in $S$ is equal to the sum
|
||||
$$\sum_{n=a}^b \floor{f(n)}.$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercise 7}%
|
||||
\label{sec:exercise-7}
|
||||
|
||||
If $a$ and $b$ are positive integers with no common factor, we have the formula
|
||||
$$\sum_{n=1}^{b-1} \floor{\frac{na}{b}} = \frac{(a - 1)(b - 1)}{2}.$$
|
||||
When $b = 1$, the sum on the left is understood to be $0$.
|
||||
|
||||
\subsection{Exercise 7a}%
|
||||
\label{sub:exercise-7a}
|
||||
|
||||
Derive this result by a geometric argument, counting lattice points in a right
|
||||
triangle.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 7b}%
|
||||
\label{sub:exercise-7b}
|
||||
|
||||
Derive the result analytically as follows:
|
||||
By changing the index of summation, note that
|
||||
$\sum_{n=1}^{b-1} \floor{na / b} = \sum_{n=1}^{b-1} \floor{a(b - n) / b}$.
|
||||
Now apply Exercises 4(a) and (b) to the bracket on the right.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercise 8}%
|
||||
\label{sec:exercise-8}
|
||||
|
||||
Let $S$ be a set of points on the real line.
|
||||
The \textit{characteristic function} of $S$ is, by definition, the function
|
||||
$\chi_S$ such that $\chi_S(x) = 1$ for every $x$ in $S$, and $\chi_S(x) = 0$
|
||||
for those $x$ not in $S$.
|
||||
Let $f$ be a step function which takes the constant value $c_k$ on the $k$th
|
||||
open subinterval $I_k$ of some partition of an interval $[a, b]$.
|
||||
Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have
|
||||
$$f(x) = \sum_{k=1}^n c_k\chi_{I_k}(x).$$
|
||||
This property is described by saying that every step function is a linear
|
||||
combination of characteristic functions of intervals.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
|
@ -10,8 +10,6 @@ namespace Exercises.Apostol.Chapter_I_3
|
|||
#check Archimedean
|
||||
#check Real.exists_isLUB
|
||||
|
||||
namespace Real
|
||||
|
||||
/-! ## The least-upper-bound axiom (completeness axiom) -/
|
||||
|
||||
/--
|
||||
|
@ -464,7 +462,7 @@ theorem forall_mem_le_forall_mem_imp_sup_le_inf (S T : Set ℝ)
|
|||
intro x hx
|
||||
exact p s hs x hx
|
||||
have ⟨S_lub, hS_lub⟩ := Real.exists_isLUB S hS ⟨t, ps⟩
|
||||
have ⟨T_glb, hT_glb⟩ := Real.exists_isGLB T hT ⟨s, pt⟩
|
||||
have ⟨T_glb, hT_glb⟩ := exists_isGLB T hT ⟨s, pt⟩
|
||||
refine ⟨S_lub, ⟨hS_lub, ⟨T_glb, ⟨hT_glb, ?_⟩⟩⟩⟩
|
||||
-- Assume `T_glb < S_lub`. Then `∃ c, T_glb + c < S_lub` which in turn implies
|
||||
-- existence of some `x ∈ S` such that `T_glb < S_lub - c / 2 < x < S_lub`.
|
||||
|
@ -489,8 +487,6 @@ theorem forall_mem_le_forall_mem_imp_sup_le_inf (S T : Set ℝ)
|
|||
_ < x := hx.right
|
||||
simp at this
|
||||
|
||||
end Real
|
||||
|
||||
/-! ## Exercises -/
|
||||
|
||||
/-- #### Exercise 1
|
||||
|
@ -498,7 +494,7 @@ end Real
|
|||
If `x` and `y` are arbitrary real numbers with `x < y`, prove that there is at
|
||||
least one real `z` satisfying `x < z < y`.
|
||||
-/
|
||||
theorem exercise1 (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
||||
theorem exercise_1 (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
||||
have ⟨z, hz⟩ := exists_pos_add_of_lt' h
|
||||
refine ⟨x + z / 2, ⟨?_, ?_⟩⟩
|
||||
· have hz' : z / 2 > 0 := by
|
||||
|
@ -515,15 +511,15 @@ theorem exercise1 (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
|||
If `x` is an arbitrary real number, prove that there are integers `m` and `n`
|
||||
such that `m < x < n`.
|
||||
-/
|
||||
theorem exercise2 (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
||||
theorem exercise_2 (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
||||
refine ⟨x - 1, ⟨x + 1, ⟨?_, ?_⟩⟩⟩ <;> norm_num
|
||||
|
||||
/-- #### Exercise 3
|
||||
|
||||
If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
||||
-/
|
||||
theorem exercise3 (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
||||
have ⟨n, hn⟩ := @Real.exists_pnat_mul_self_geq_of_pos x 1 h
|
||||
theorem exercise_3 (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
||||
have ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos x 1 h
|
||||
refine ⟨n, ?_⟩
|
||||
have hr := mul_lt_mul_of_pos_right hn (show 0 < 1 / ↑↑n by norm_num)
|
||||
conv at hr => arg 2; rw [mul_comm, ← mul_assoc]; simp
|
||||
|
@ -536,7 +532,7 @@ which satisfies the inequalities `n ≤ x < n + 1`. This `n` is called the
|
|||
greatest integer in `x` and is denoted by `⌊x⌋`. For example, `⌊5⌋ = 5`,
|
||||
`⌊5 / 2⌋ = 2`, `⌊-8/3⌋ = -3`.
|
||||
-/
|
||||
theorem exercise4 (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
||||
theorem exercise_4 (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
||||
let n := Int.floor x
|
||||
refine ⟨n, ⟨?_, ?_⟩⟩
|
||||
· exact ⟨Int.floor_le x, Int.lt_floor_add_one x⟩
|
||||
|
@ -549,7 +545,7 @@ theorem exercise4 (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
|||
If `x` is an arbitrary real number, prove that there is exactly one integer `n`
|
||||
which satisfies `x ≤ n < x + 1`.
|
||||
-/
|
||||
theorem exercise5 (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
||||
theorem exercise_5 (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
||||
let n := Int.ceil x
|
||||
refine ⟨n, ⟨?_, ?_⟩⟩
|
||||
· exact ⟨Int.le_ceil x, Int.ceil_lt_add_one x⟩
|
|
@ -4,9 +4,9 @@
|
|||
\input{../../preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Exercises/Apostol/Chapter\_I\_3}
|
||||
{Exercises.Apostol.Chapter\_I\_3.Real.#1}
|
||||
{Chapter\_I\_3.Real.#1}
|
||||
{Bookshelf/Apostol/Chapter\_I\_3}
|
||||
{Apostol.Chapter\_I\_3.#1}
|
||||
{Chapter\_I\_3.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
|
@ -10,6 +10,8 @@
|
|||
|
||||
\hypersetup{colorlinks=true, urlcolor=blue}
|
||||
|
||||
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
||||
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
||||
% The first argument refers to a relative path upward from a current file to
|
||||
% the root of the workspace (i.e. where this `preamble.tex` file is located).
|
||||
\newcommand{\lean}[4]{\href{#1/#2.html\##3}{#4}}
|
||||
|
|
Loading…
Reference in New Issue