Enderton. Draft up ordering relation section.
parent
c07be8a4ce
commit
dd430d8379
|
@ -87,6 +87,17 @@ The \textbf{composition} of sets $F$ and $G$ is
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Connected}}%
|
||||
\hyperlabel{ref:connected}
|
||||
|
||||
A binary relation $R$ on $A$ is \textbf{connected} if for distinct $x, y \in A$, either $xRy$ or $yRx$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Algebra/Classes}{IsConnected}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Domain}}%
|
||||
\hyperlabel{ref:domain}
|
||||
|
||||
|
@ -220,6 +231,36 @@ The \textbf{inverse} of a set $F$ is the set
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Irreflexive}}%
|
||||
\hyperlabel{ref:irreflexive}
|
||||
|
||||
A binary relation $R$ on set $A$ is \textbf{irreflexive} if there is no $x \in A$ for which $xRx$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Mathlib/Init/Algebra/Classes}{IsIrrefl}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Linear Ordering}}
|
||||
\hyperlabel{ref:linear-ordering}
|
||||
|
||||
Let $A$ be any set.
|
||||
A \textbf{linear ordering} on $A$ (also called a \textbf{total ordering} on $A$)
|
||||
is a binary relation $R$ on $A$ (i.e., $R \subseteq A \times A$) meeting the
|
||||
following two conditions:
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item $R$ is \nameref{ref:transitive}.
|
||||
\item $R$ is \nameref{ref:trichotomous}.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Mathlib/Init/Algebra/Classes}{IsLinearOrder}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Ordered Pair}}%
|
||||
\hyperlabel{ref:ordered-pair}
|
||||
|
||||
|
@ -415,6 +456,20 @@ A binary relation $R$ is \textbf{transitive} if and only if whenever $xRy$ and
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Trichotomous}}%
|
||||
\hyperlabel{ref:trichotomous}
|
||||
|
||||
A binary relation $R$ on set $A$ is \textbf{trichotomous} if for any
|
||||
$x, y \in A$, exactly one of the three alternatives
|
||||
$$xRy, \quad x = y, \quad yRx$$
|
||||
holds.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Mathlib/Init/Algebra/Classes}{IsTrichotomous}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Union Axiom}}%
|
||||
\hyperlabel{ref:union-axiom}
|
||||
|
||||
|
@ -3498,6 +3553,42 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section{Ordering Relations}%
|
||||
\hyperlabel{sec:ordering-relations}
|
||||
|
||||
\subsection{\pending{Theorem 3R}}%
|
||||
\hyperlabel{sub:theorem-3r}
|
||||
|
||||
\begin{theorem}[3R]
|
||||
|
||||
Let $R$ be a linear ordering on $A$.
|
||||
\begin{enumerate}[(i)]
|
||||
\item There is no $x$ for which $xRx$.
|
||||
\item For distinct $x$ and $y$ in $A$, either $xRy$ or $yRx$.
|
||||
\end{enumerate}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Suppose $R$ is a \nameref{ref:linear-ordering} on $A$.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
Let $x \in A$.
|
||||
By definition, $R$ is \nameref{ref:trichotomous}.
|
||||
Then only one of $xRx$ and $x = x$ can hold.
|
||||
Since $x = x$ obviously holds, it follows $\pair{x, x} \not\in R$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Let $x, y \in A$ such that $x \neq y$.
|
||||
By definition, $R$ is \nameref{ref:trichotomous}.
|
||||
Thus only one of $$xRy, \quad x = y, \quad yRx$$ hold.
|
||||
By hypothesis $x \neq y$ meaning either $xRy$ or $yRx$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 3}%
|
||||
\hyperlabel{sec:exercises-3}
|
||||
|
||||
|
@ -5454,4 +5545,47 @@ State precisely the "analogous results" mentioned in Theorem 3Q.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 3.43}}%
|
||||
\label{sub:exercise-3.43}
|
||||
|
||||
Assume that $R$ is a linear ordering on a set $A$.
|
||||
Show that $R^{-1}$ is also a linear ordering on $A$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 3.44}}%
|
||||
\label{sub:exercise-3.44}
|
||||
|
||||
Assume that $<$ is a linear orderinng on a set $A$.
|
||||
Assume that $f \colon A \rightarrow A$ and that $f$ has the property that
|
||||
whenever $x < y$, then $f(x) < f(y)$.
|
||||
Show that $f$ is one-to-one and that whenever $f(x) < f(y)$, then $x < y$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 3.45}}%
|
||||
\label{sub:exercise-3.45}
|
||||
|
||||
Assume that $<_A$ and $<_B$ are linear orderings on $A$ and $B$, respectively.
|
||||
Define the binary relation $<_L$ on the Cartesian product $A \times B$ by:
|
||||
$$\pair{a_1, b_1} <_L \pair{a_2, b_2} \quad\text{iff}\quad
|
||||
\text{either } a_1 <_A a_2 \text{ or } (a_1 = a_2 \land b_1 <_B b_2).$$
|
||||
Show that $<_L$ is a linear ordering on $A \times B$.
|
||||
(The relation $<_L$ is called \textit{lexicographic} ordering, being the
|
||||
ordering used in making dictionaries.)
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import Common.Algebra
|
||||
import Common.Finset
|
||||
import Common.List
|
||||
import Common.Logic
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
import Common.Algebra.Classes
|
|
@ -0,0 +1,13 @@
|
|||
import Mathlib.Init.Algebra.Classes
|
||||
|
||||
/-! # Common.Algebra.Classes
|
||||
|
||||
Additional theorems and definitions useful in the context of algebraic classes.
|
||||
-/
|
||||
|
||||
/--
|
||||
`IsConnected X lt` means that the binary relation `lt` on `X` is connected, that
|
||||
is, either `lt a b` or `lt b a` for any distinct `a` and `b`.
|
||||
-/
|
||||
class IsConnected (α : Type u) (lt : α → α → Prop) : Prop where
|
||||
connected : ∀ a b, a ≠ b → lt a b ∨ lt b a
|
Loading…
Reference in New Issue