Enderton. Draft up ordering relation section.

finite-set-exercises
Joshua Potter 2023-07-13 13:56:01 -06:00
parent c07be8a4ce
commit dd430d8379
4 changed files with 149 additions and 0 deletions
Bookshelf/Enderton

View File

@ -87,6 +87,17 @@ The \textbf{composition} of sets $F$ and $G$ is
\end{definition} \end{definition}
\section{\defined{Connected}}%
\hyperlabel{ref:connected}
A binary relation $R$ on $A$ is \textbf{connected} if for distinct $x, y \in A$, either $xRy$ or $yRx$.
\begin{definition}
\lean*{Common/Algebra/Classes}{IsConnected}
\end{definition}
\section{\defined{Domain}}% \section{\defined{Domain}}%
\hyperlabel{ref:domain} \hyperlabel{ref:domain}
@ -220,6 +231,36 @@ The \textbf{inverse} of a set $F$ is the set
\end{definition} \end{definition}
\section{\defined{Irreflexive}}%
\hyperlabel{ref:irreflexive}
A binary relation $R$ on set $A$ is \textbf{irreflexive} if there is no $x \in A$ for which $xRx$.
\begin{definition}
\lean*{Mathlib/Init/Algebra/Classes}{IsIrrefl}
\end{definition}
\section{\defined{Linear Ordering}}
\hyperlabel{ref:linear-ordering}
Let $A$ be any set.
A \textbf{linear ordering} on $A$ (also called a \textbf{total ordering} on $A$)
is a binary relation $R$ on $A$ (i.e., $R \subseteq A \times A$) meeting the
following two conditions:
\begin{enumerate}[(a)]
\item $R$ is \nameref{ref:transitive}.
\item $R$ is \nameref{ref:trichotomous}.
\end{enumerate}
\begin{definition}
\lean*{Mathlib/Init/Algebra/Classes}{IsLinearOrder}
\end{definition}
\section{\defined{Ordered Pair}}% \section{\defined{Ordered Pair}}%
\hyperlabel{ref:ordered-pair} \hyperlabel{ref:ordered-pair}
@ -415,6 +456,20 @@ A binary relation $R$ is \textbf{transitive} if and only if whenever $xRy$ and
\end{definition} \end{definition}
\section{\defined{Trichotomous}}%
\hyperlabel{ref:trichotomous}
A binary relation $R$ on set $A$ is \textbf{trichotomous} if for any
$x, y \in A$, exactly one of the three alternatives
$$xRy, \quad x = y, \quad yRx$$
holds.
\begin{definition}
\lean*{Mathlib/Init/Algebra/Classes}{IsTrichotomous}
\end{definition}
\section{\defined{Union Axiom}}% \section{\defined{Union Axiom}}%
\hyperlabel{ref:union-axiom} \hyperlabel{ref:union-axiom}
@ -3498,6 +3553,42 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{proof} \end{proof}
\section{Ordering Relations}%
\hyperlabel{sec:ordering-relations}
\subsection{\pending{Theorem 3R}}%
\hyperlabel{sub:theorem-3r}
\begin{theorem}[3R]
Let $R$ be a linear ordering on $A$.
\begin{enumerate}[(i)]
\item There is no $x$ for which $xRx$.
\item For distinct $x$ and $y$ in $A$, either $xRy$ or $yRx$.
\end{enumerate}
\end{theorem}
\begin{proof}
Suppose $R$ is a \nameref{ref:linear-ordering} on $A$.
\paragraph{(i)}%
Let $x \in A$.
By definition, $R$ is \nameref{ref:trichotomous}.
Then only one of $xRx$ and $x = x$ can hold.
Since $x = x$ obviously holds, it follows $\pair{x, x} \not\in R$.
\paragraph{(ii)}%
Let $x, y \in A$ such that $x \neq y$.
By definition, $R$ is \nameref{ref:trichotomous}.
Thus only one of $$xRy, \quad x = y, \quad yRx$$ hold.
By hypothesis $x \neq y$ meaning either $xRy$ or $yRx$.
\end{proof}
\section{Exercises 3}% \section{Exercises 3}%
\hyperlabel{sec:exercises-3} \hyperlabel{sec:exercises-3}
@ -5454,4 +5545,47 @@ State precisely the "analogous results" mentioned in Theorem 3Q.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 3.43}}%
\label{sub:exercise-3.43}
Assume that $R$ is a linear ordering on a set $A$.
Show that $R^{-1}$ is also a linear ordering on $A$.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 3.44}}%
\label{sub:exercise-3.44}
Assume that $<$ is a linear orderinng on a set $A$.
Assume that $f \colon A \rightarrow A$ and that $f$ has the property that
whenever $x < y$, then $f(x) < f(y)$.
Show that $f$ is one-to-one and that whenever $f(x) < f(y)$, then $x < y$.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 3.45}}%
\label{sub:exercise-3.45}
Assume that $<_A$ and $<_B$ are linear orderings on $A$ and $B$, respectively.
Define the binary relation $<_L$ on the Cartesian product $A \times B$ by:
$$\pair{a_1, b_1} <_L \pair{a_2, b_2} \quad\text{iff}\quad
\text{either } a_1 <_A a_2 \text{ or } (a_1 = a_2 \land b_1 <_B b_2).$$
Show that $<_L$ is a linear ordering on $A \times B$.
(The relation $<_L$ is called \textit{lexicographic} ordering, being the
ordering used in making dictionaries.)
\begin{proof}
TODO
\end{proof}
\end{document} \end{document}

View File

@ -1,3 +1,4 @@
import Common.Algebra
import Common.Finset import Common.Finset
import Common.List import Common.List
import Common.Logic import Common.Logic

1
Common/Algebra.lean Normal file
View File

@ -0,0 +1 @@
import Common.Algebra.Classes

View File

@ -0,0 +1,13 @@
import Mathlib.Init.Algebra.Classes
/-! # Common.Algebra.Classes
Additional theorems and definitions useful in the context of algebraic classes.
-/
/--
`IsConnected X lt` means that the binary relation `lt` on `X` is connected, that
is, either `lt a b` or `lt b a` for any distinct `a` and `b`.
-/
class IsConnected (α : Type u) (lt : αα → Prop) : Prop where
connected : ∀ a b, a ≠ b → lt a b lt b a