Finish Apostol 1.22.
parent
9ac70c15c9
commit
dc4932e0e7
|
@ -2670,7 +2670,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.
|
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.
|
||||||
Then the graph of $f$, that is, the set
|
Then the graph of $f$, that is, the set
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{sec:measurability-graph-nonnegative-function-eq1}
|
\label{sec:theorem-1.11-eq1}
|
||||||
\{(x, y) \mid a \leq x \leq b, y = f(x)\},
|
\{(x, y) \mid a \leq x \leq b, y = f(x)\},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is measurable and has area equal to $0$.
|
is measurable and has area equal to $0$.
|
||||||
|
@ -2686,7 +2686,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
equal to $0$.
|
equal to $0$.
|
||||||
|
|
||||||
\paragraph{(i)}%
|
\paragraph{(i)}%
|
||||||
\label{par:measurability-graph-nonnegative-function-i}
|
\label{par:theorem-1.11-i}
|
||||||
|
|
||||||
By definition of integrability, there exists one and only one number $I$
|
By definition of integrability, there exists one and only one number $I$
|
||||||
such that
|
such that
|
||||||
|
@ -2704,10 +2704,9 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
Let $Q$ denote the ordinate set of $f$.
|
Let $Q$ denote the ordinate set of $f$.
|
||||||
By \nameref{sec:measurability-ordinate-sets}, $Q$ is measurable with area
|
By \nameref{sec:measurability-ordinate-sets}, $Q$ is measurable with area
|
||||||
equal to the integral $I = \int_a^b f(x) \mathop{dx}$.
|
equal to the integral $I = \int_a^b f(x) \mathop{dx}$.
|
||||||
By \nameref{par:measurability-graph-nonnegative-function-i}, $Q'$ is
|
By \nameref{par:theorem-1.11-i}, $Q'$ is
|
||||||
measurable with area also equal to $I$.
|
measurable with area also equal to $I$.
|
||||||
We note the graph of $f$,
|
We note the graph of $f$, \eqref{sec:theorem-1.11-eq1}, is equal to set
|
||||||
\eqref{sec:measurability-graph-nonnegative-function-eq1}, is equal to set
|
|
||||||
$Q - Q'$.
|
$Q - Q'$.
|
||||||
By the \nameref{sec:area-difference-property}, $Q - Q'$ is measurable and
|
By the \nameref{sec:area-difference-property}, $Q - Q'$ is measurable and
|
||||||
$$a(Q - Q') = a(Q) - a(Q') = I - I = 0.$$
|
$$a(Q - Q') = a(Q) - a(Q') = I - I = 0.$$
|
||||||
|
@ -2751,7 +2750,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
on every $k$th open subinterval of $P$.
|
on every $k$th open subinterval of $P$.
|
||||||
Then, by \eqref{sec:theorem-1.9-eq1}, it follows
|
Then, by \eqref{sec:theorem-1.9-eq1}, it follows
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{sec:integrability-bounded-monotonic-functions-eq1}
|
\label{sec:theorem-1.12-eq1}
|
||||||
\int_a^b s(x) \mathop{dx} \leq \ubar{I}(f)
|
\int_a^b s(x) \mathop{dx} \leq \ubar{I}(f)
|
||||||
\leq \bar{I}(f) \leq \int_a^b t(x) \mathop{dx}.
|
\leq \bar{I}(f) \leq \int_a^b t(x) \mathop{dx}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
@ -2770,7 +2769,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
& = \left[\frac{b - a}{n}\right] \sum_{k=1}^n f(x_k) - f(x_{k-1}) \\
|
& = \left[\frac{b - a}{n}\right] \sum_{k=1}^n f(x_k) - f(x_{k-1}) \\
|
||||||
& = \frac{(b - a)(f(b) - f(a))}{n}.
|
& = \frac{(b - a)(f(b) - f(a))}{n}.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
By \eqref{sec:integrability-bounded-monotonic-functions-eq1},
|
By \eqref{sec:theorem-1.12-eq1},
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\ubar{I}(f)
|
\ubar{I}(f)
|
||||||
& \leq \bar{I}(f) \\
|
& \leq \bar{I}(f) \\
|
||||||
|
@ -2790,7 +2789,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
on every $k$th open subinterval of $P$.
|
on every $k$th open subinterval of $P$.
|
||||||
Then, by \eqref{sec:theorem-1.9-eq1}, it follows
|
Then, by \eqref{sec:theorem-1.9-eq1}, it follows
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{sec:integrability-bounded-monotonic-functions-eq2}
|
\label{sec:theorem-1.12-eq2}
|
||||||
\int_a^b s(x) \mathop{dx} \leq \ubar{I}(f)
|
\int_a^b s(x) \mathop{dx} \leq \ubar{I}(f)
|
||||||
\leq \bar{I}(f) \leq \int_a^b t(x) \mathop{dx}.
|
\leq \bar{I}(f) \leq \int_a^b t(x) \mathop{dx}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
@ -2809,7 +2808,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
& = \left[\frac{b - a}{n}\right] \sum_{k=1}^n f(x_{k-1}) - f(x_k) \\
|
& = \left[\frac{b - a}{n}\right] \sum_{k=1}^n f(x_{k-1}) - f(x_k) \\
|
||||||
& = \frac{(b - a)(f(a) - f(b))}{n}.
|
& = \frac{(b - a)(f(a) - f(b))}{n}.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
By \eqref{sec:integrability-bounded-monotonic-functions-eq2},
|
By \eqref{sec:theorem-1.12-eq2},
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\ubar{I}(f)
|
\ubar{I}(f)
|
||||||
& \leq \bar{I}(f) \\
|
& \leq \bar{I}(f) \\
|
||||||
|
@ -2822,9 +2821,9 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\section{\unverified{%
|
\section{\partial{%
|
||||||
Calculation of the Integral of a Bounded Monotonic Function}}%
|
Calculation of the Integral of a Bounded Increasing Function}}%
|
||||||
\label{sec:calculation-integral-bounded-monotonic-function}
|
\label{sec:calculation-integral-bounded-increasing-function}
|
||||||
\label{sec:theorem-1.13}
|
\label{sec:theorem-1.13}
|
||||||
|
|
||||||
\begin{theorem}[1.13]
|
\begin{theorem}[1.13]
|
||||||
|
@ -2832,13 +2831,157 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
Assume $f$ is increasing on a closed interval $[a, b]$.
|
Assume $f$ is increasing on a closed interval $[a, b]$.
|
||||||
Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$.
|
Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$.
|
||||||
If $I$ is any number which satisfies the inequalities
|
If $I$ is any number which satisfies the inequalities
|
||||||
$$\frac{b - a}{n} \sum_{k=0}^{n-1} f(x_k)
|
\begin{equation}
|
||||||
\leq I \leq
|
\label{sec:theorem-1.13-eq1}
|
||||||
\frac{b - a}{n} \sum_{k=1}^n f(x_k)$$
|
\frac{b - a}{n} \sum_{k=0}^{n-1} f(x_k)
|
||||||
|
\leq I \leq
|
||||||
|
\frac{b - a}{n} \sum_{k=1}^n f(x_k)
|
||||||
|
\end{equation}
|
||||||
for every integer $n \geq 1$, then $I = \int_a^b f(x) \mathop{dx}$.
|
for every integer $n \geq 1$, then $I = \int_a^b f(x) \mathop{dx}$.
|
||||||
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $f$ be increasing on a closed interval $[a, b]$ and $I$ be a number
|
||||||
|
satisfying \eqref{sec:theorem-1.13-eq1}.
|
||||||
|
Let $s$ be the step function below $f$ with constant value $f(x_{k-1})$
|
||||||
|
on every $k$th open subinterval of $P$.
|
||||||
|
Let $t$ be the step function above $f$ with constant value $f(x_k)$
|
||||||
|
on every $k$th open subinterval of $P$.
|
||||||
|
By definition of the \nameref{sec:def-integral-step-function},
|
||||||
|
\begin{align*}
|
||||||
|
\int_a^b s(x) \mathop{dx}
|
||||||
|
& = \sum_{k=1}^n f(x_{k-1})\left[\frac{b - a}{n}\right] \\
|
||||||
|
& = \sum_{k=0}^{n-1} f(x_k)\left[\frac{b - a}{n}\right] \\
|
||||||
|
\int_a^b t(x) \mathop{dx}
|
||||||
|
& = \sum_{k=1}^n f(x_k)\left[\frac{b - a}{n}\right].
|
||||||
|
\end{align*}
|
||||||
|
Therefore \eqref{sec:theorem-1.13-eq1} can alternatively be written as
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:theorem-1.13-eq2}
|
||||||
|
\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}.
|
||||||
|
\end{equation}
|
||||||
|
By \nameref{sec:theorem-1.12}, $f$ is integrable.
|
||||||
|
Therefore \nameref{sec:theorem-1.9} indicates $f$ satisfies
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:theorem-1.13-eq3}
|
||||||
|
\int_a^b s(x) \mathop{dx}
|
||||||
|
\leq \int_a^b f(x) \mathop{dx}
|
||||||
|
\leq \int_a^b t(x) \mathop{dx}.
|
||||||
|
\end{equation}
|
||||||
|
Manipulating \eqref{sec:theorem-1.13-eq2} and \eqref{sec:theorem-1.13-eq3}
|
||||||
|
together yields
|
||||||
|
\begin{align*}
|
||||||
|
I - \int_a^b f(x) \mathop{dx}
|
||||||
|
& \leq \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx}, \\
|
||||||
|
\int_a^b f(x) \mathop{dx} - I
|
||||||
|
& \leq \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx}.
|
||||||
|
\end{align*}
|
||||||
|
Combining the above inequalities in turn yields
|
||||||
|
\begin{align*}
|
||||||
|
0
|
||||||
|
& \leq \abs{\int_a^b f(x) \mathop{dx} - I} \\
|
||||||
|
& \leq \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx} \\
|
||||||
|
& = \sum_{k=1}^n f(x_k) \left[ \frac{b - a}{n} \right] -
|
||||||
|
\sum_{k=1}^n f(x_{k-1}) \left[ \frac{b - a}{n} \right] \\
|
||||||
|
& = \frac{b - a}{n} \sum_{k=1}^n f(x_k) - f(x_{k-1}) \\
|
||||||
|
& = \frac{(b - a)(f(b) - f(a))}{n}.
|
||||||
|
\end{align*}
|
||||||
|
The above chain of inequalities holds for all positive integers $n \geq 1$,
|
||||||
|
meaning \nameref{sec:theorem-i.31} applies.
|
||||||
|
Thus $$\abs{\int_a^b f(x) \mathop{dx} - I} = 0,$$ which immediately implies
|
||||||
|
the desired result.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\section{\partial{%
|
||||||
|
Calculation of the Integral of a Bounded Decreasing Function}}%
|
||||||
|
\label{sec:calculation-integral-bounded-decreasing-function}
|
||||||
|
\label{sec:theorem-1.14}
|
||||||
|
|
||||||
|
\begin{theorem}[1.14]
|
||||||
|
|
||||||
|
Assume $f$ is descreasing on $[a, b]$.
|
||||||
|
Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$.
|
||||||
|
If $I$ is any number which satisfies the inequalities
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:theorem-1.14-eq1}
|
||||||
|
\frac{b - a}{n} \sum_{k=1}^n f(x_k)
|
||||||
|
\leq I \leq
|
||||||
|
\frac{b - a}{n} \sum_{k=0}^{n-1} f(x_k)
|
||||||
|
\end{equation}
|
||||||
|
for every integer $n \geq 1$, then $I = \int_a^b f(x) \mathop{dx}$.
|
||||||
|
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $f$ be decreasing on a closed interval $[a, b]$ and $I$ be a number
|
||||||
|
satisfying \eqref{sec:theorem-1.14-eq1}.
|
||||||
|
Let $s$ be the step function below $f$ with constant value $f(x_k)$
|
||||||
|
on every $k$th open subinterval of $P$.
|
||||||
|
Let $t$ be the step function above $f$ with constant value $f(x_{k-1})$
|
||||||
|
on every $k$th open subinterval of $P$.
|
||||||
|
By definition of the \nameref{sec:def-integral-step-function},
|
||||||
|
\begin{align*}
|
||||||
|
\int_a^b s(x) \mathop{dx}
|
||||||
|
& = \sum_{k=1}^n f(x_k) \left[\frac{b - a}{n}\right] \\
|
||||||
|
\int_a^b t(x) \mathop{dx}
|
||||||
|
& = \sum_{k=1}^n f(x_{k-1}) \left[\frac{b - a}{n}\right] \\
|
||||||
|
& = \sum_{k=0}^{n-1} f(x) \left[\frac{b - a}{n}\right].
|
||||||
|
\end{align*}
|
||||||
|
Therefore \eqref{sec:theorem-1.14-eq1} can alternatively be written as
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:theorem-1.14-eq2}
|
||||||
|
\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}.
|
||||||
|
\end{equation}
|
||||||
|
By \nameref{sec:theorem-1.12}, $f$ is integrable.
|
||||||
|
Therefore \nameref{sec:theorem-1.9} indicates $f$ satisfies
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:theorem-1.14-eq3}
|
||||||
|
\int_a^b s(x) \mathop{dx}
|
||||||
|
\leq \int_a^b f(x) \mathop{dx}
|
||||||
|
\leq \int_a^b t(x) \mathop{dx}.
|
||||||
|
\end{equation}
|
||||||
|
Manipulating \eqref{sec:theorem-1.14-eq2} and \eqref{sec:theorem-1.14-eq3}
|
||||||
|
together yields
|
||||||
|
\begin{align*}
|
||||||
|
I - \int_a^b f(x) \mathop{dx}
|
||||||
|
& \leq \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx}, \\
|
||||||
|
\int_a^b f(x) \mathop{dx} - I
|
||||||
|
& \leq \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx}.
|
||||||
|
\end{align*}
|
||||||
|
Combining the above inequalities in turn yields
|
||||||
|
\begin{align*}
|
||||||
|
0
|
||||||
|
& \leq \abs{\int_a^b f(x) \mathop{dx} - I} \\
|
||||||
|
& \leq \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx} \\
|
||||||
|
& = \sum_{k=1}^n f(x_k) \left[ \frac{b - a}{n} \right] -
|
||||||
|
\sum_{k=1}^n f(x_{k-1}) \left[ \frac{b - a}{n} \right] \\
|
||||||
|
& = \frac{b - a}{n} \sum_{k=1}^n f(x_k) - f(x_{k-1}) \\
|
||||||
|
& = \frac{(b - a)(f(b) - f(a))}{n}.
|
||||||
|
\end{align*}
|
||||||
|
The above chain of inequalities holds for all positive integers $n \geq 1$,
|
||||||
|
meaning \nameref{sec:theorem-i.31} applies.
|
||||||
|
Thus $$\abs{\int_a^b f(x) \mathop{dx} - I} = 0,$$ which immediately implies
|
||||||
|
the desired result.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\section{\unverified{%
|
||||||
|
Calculation of the Integral \texorpdfstring{$\int_0^b x^p \mathop{dx}$}{int-x-p}
|
||||||
|
when \texorpdfstring{$p$}{p} is a Positive Integer}}%
|
||||||
|
\label{sec:calculation-integral-int-x-p-p-positive-integer}
|
||||||
|
\label{sec:theorem-1.15}
|
||||||
|
|
||||||
|
\begin{theorem}[1.15]
|
||||||
|
|
||||||
|
If $p$ is a positive integer and $b > 0$, we have
|
||||||
|
$$\int_0^b x^p \mathop{dx} = \frac{b^{p+1}}{p+1}.$$
|
||||||
|
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
TODO
|
||||||
|
|
Loading…
Reference in New Issue