Enderton. Peano postulate theorem/exercise drafts.

finite-set-exercises
Joshua Potter 2023-07-23 12:13:24 -06:00
parent f328440797
commit db6074f1a1
3 changed files with 184 additions and 15 deletions

View File

@ -605,6 +605,13 @@ A binary relation $R$ is \textbf{transitive} if and only if whenever $xRy$ and
\end{definition} \end{definition}
\section{\defined{Transitive Set}}%
\hyperlabel{ref:transitive-set}
A set $A$ is said to be \textbf{transitive} if and only if every member of a
member of $A$ is a member of $A$ itself.
That is, $\bigcup A \subseteq A$.
\section{\defined{Trichotomous}}% \section{\defined{Trichotomous}}%
\hyperlabel{ref:trichotomous} \hyperlabel{ref:trichotomous}
@ -6075,6 +6082,109 @@ Show that $<_L$ is a linear ordering on $A \times B$.
\end{proof} \end{proof}
\subsection{\unverified{Theorem 4E}}%
\hyperlabel{sub:theorem-4e}
\begin{theorem}[4E]
For a transitive set $a$, $$\bigcup \left(a^+\right) = a.$$
\end{theorem}
\begin{proof}
Let $a$ be a \nameref{ref:transitive-set}.
We show that
\begin{equation}
\hyperlabel{sub:theorem-4e-eq1}
x \in \bigcup \left(a^+\right) \iff x \in a.
\end{equation}
\paragraph{($\Rightarrow$)}%
Suppose $x \in \bigcup \left(a^+\right)$.
By definition of \nameref{ref:successor},
$x \in \bigcup \left(a \cup \{a\}\right)$.
Then there exists some $b \in a \cup \{a\}$ such that $x \in b$.
There are two cases to consider:
\subparagraph{Case 1}%
Suppose $b \in a$.
By definition of a transitive set, $x \in b \in a$ means $x \in a$.
\subparagraph{Case 2}%
Suppose $b \in \{a\}$.
Then $b = a$ and immediately $x \in b = a$.
\paragraph{($\Leftarrow$)}%
Suppose $x \in a$.
Then immediately $x \in a \cup \{a\}$.
Thus there exists some $b$ such that $b \in a \cup \{a\}$ and $x \in b$,
namely $b = \{a\}$.
Thus $x \in \bigcup \left(a^+\right)$.
\paragraph{Conclusion}%
We have shown both sides of \eqref{sub:theorem-4e-eq1} holds.
By the \nameref{ref:extensionality-axiom}, $\bigcup \left(a^+\right) = a$.
\end{proof}
\subsection{\unverified{Theorem 4F}}%
\hyperlabel{sub:theorem-4f}
\begin{theorem}[4F]
Every natural number is a transitive set.
\end{theorem}
\begin{proof}
Let $T = \{n \in \omega \mid n \text{ is a transitive set}\}$.
We (i) prove that $T$ is an \nameref{ref:inductive-set} and then (ii) every
natural number is a transitive set.
\paragraph{(i)}%
\label{par:theorem-4f-i}
First, $\emptyset \in T$ since it vacuously holds that a member of a
member of $\emptyset$ is itself a member of $\emptyset$.
Next, let $n \in T$ and consider whether $n^+ \in T$.
Since $n$ is a transitive set, \nameref{sub:theorem-4e} implies
$\bigcup \left(n^+\right) = n$.
But $n \subseteq n^+ = n \cup \{n\}$.
Thus $\bigcup \left(n^+\right) \subseteq n+$, i.e. $n^+$ is a transitive
set.
Therefore $n^+ \in T$.
Hence $T$ is inductive.
\paragraph{(ii)}%
Notice $T \subseteq \omega$.
By \nameref{par:theorem-4f-i} and \nameref{sub:theorem-4b}, $T = \omega$.
Thus every natural number is a transitive set.
\end{proof}
\subsection{\sorry{Theorem 4G}}%
\label{sub:theorem-4g}
\begin{theorem}[4G]
The set $\omega$ is a transitive set.
\end{theorem}
\begin{proof}
TODO
\end{proof}
\section{Exercises 4}% \section{Exercises 4}%
\hyperlabel{sec:exercises-4} \hyperlabel{sec:exercises-4}
@ -6098,4 +6208,71 @@ Show that $1 \neq 3$ i.e., that $\emptyset^+ \neq \emptyset^{+++}$.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 4.2}}%
\hyperlabel{sub:exercise-4.2}
Show that if $a$ is a transitive set, then $a^+$ is also a transitive set.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.3}}%
\hyperlabel{sub:exercise-4.3}
\begin{enumerate}[(a)]
\item Show that if $a$ is a transitive set, then $\powerset{a}$ is also a
transitive set.
\item Show that if $\powerset{a}$ is a transitive set, then $a$ is also a
transitive set.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.4}}%
\hyperlabel{sub:exercise-4.4}
Show that if $a$ is a transitive set, then $\bigcup a$ is also a transitive set.
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.5}}%
\hyperlabel{sub:exercise-4.5}
Assume that every member of $\mathscr{A}$ is a transitive set.
\begin{enumerate}[(a)]
\item Show that $\bigcup \mathscr{A}$ is a transitive set.
\item Show that $\bigcap \mathscr{A}$ is a transitive set (assume that
$\mathscr{A}$ is nonempty).
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Exercise 4.6}}%
\hyperlabel{sub:exercise-4.6}
Prove the converse to Theorem 4E: If $\bigcup \left(a^+\right) = a$, then $a$ is
a transitive set.
\begin{proof}
TODO
\end{proof}
\end{document} \end{document}

View File

@ -34,17 +34,7 @@ theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩ · intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩ exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
/-! ## Characteristic Function -/ /-! ## Pair Sets -/
/--
The characteristic function of a `Set` `S`.
It returns `1` if the specified input belongs to `S` and `0` otherwise.
-/
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
if x ∈ S then 1 else 0
/-! ## Equality -/
/-- /--
If `{x, y} = {x}` then `x = y`. If `{x, y} = {x}` then `x = y`.

View File

@ -39,8 +39,9 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
<ul> <ul>
<li> <li>
<span style="color:darkgray">Dark gray statements </span> are <span style="color:darkgray">Dark gray statements </span> are
reserved for definitions and axioms that have been encoded in both reserved for definitions and axioms that have been encoded in LaTeX.
LaTeX and Lean. A corresponding reference to a definition/axiom in Lean may also be
provided.
</li> </li>
<li> <li>
<span style="color:teal">Teal statements </span> are reserved for <span style="color:teal">Teal statements </span> are reserved for
@ -50,12 +51,13 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
<li> <li>
<span style="color:olive">Olive statements </span> are reserved for <span style="color:olive">Olive statements </span> are reserved for
statements, theorems, lemmas, etc. that have been proven in LaTeX statements, theorems, lemmas, etc. that have been proven in LaTeX
and will not be proven in Lean. and will <i>not</i> be proven in Lean.
</li> </li>
<li> <li>
<span style="color:fuchsia">Fuchsia statements </span> are reserved <span style="color:fuchsia">Fuchsia statements </span> are reserved
for definitions, axioms, statements, theorems, lemmas, etc. that for definitions, axioms, statements, theorems, lemmas, etc. that
have been proven or encoded in LaTeX and will be encoded in Lean. have been proven or encoded in LaTeX and <i>will</i> be encoded in
Lean.
</li> </li>
<li> <li>
<span style="color:maroon">Maroon </span> serves as a catch-all for <span style="color:maroon">Maroon </span> serves as a catch-all for