Enderton. Peano postulate theorem/exercise drafts.
parent
f328440797
commit
db6074f1a1
|
@ -605,6 +605,13 @@ A binary relation $R$ is \textbf{transitive} if and only if whenever $xRy$ and
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Transitive Set}}%
|
||||
\hyperlabel{ref:transitive-set}
|
||||
|
||||
A set $A$ is said to be \textbf{transitive} if and only if every member of a
|
||||
member of $A$ is a member of $A$ itself.
|
||||
That is, $\bigcup A \subseteq A$.
|
||||
|
||||
\section{\defined{Trichotomous}}%
|
||||
\hyperlabel{ref:trichotomous}
|
||||
|
||||
|
@ -6075,6 +6082,109 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 4E}}%
|
||||
\hyperlabel{sub:theorem-4e}
|
||||
|
||||
\begin{theorem}[4E]
|
||||
|
||||
For a transitive set $a$, $$\bigcup \left(a^+\right) = a.$$
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $a$ be a \nameref{ref:transitive-set}.
|
||||
We show that
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:theorem-4e-eq1}
|
||||
x \in \bigcup \left(a^+\right) \iff x \in a.
|
||||
\end{equation}
|
||||
|
||||
\paragraph{($\Rightarrow$)}%
|
||||
|
||||
Suppose $x \in \bigcup \left(a^+\right)$.
|
||||
By definition of \nameref{ref:successor},
|
||||
$x \in \bigcup \left(a \cup \{a\}\right)$.
|
||||
Then there exists some $b \in a \cup \{a\}$ such that $x \in b$.
|
||||
There are two cases to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
Suppose $b \in a$.
|
||||
By definition of a transitive set, $x \in b \in a$ means $x \in a$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
Suppose $b \in \{a\}$.
|
||||
Then $b = a$ and immediately $x \in b = a$.
|
||||
|
||||
\paragraph{($\Leftarrow$)}%
|
||||
|
||||
Suppose $x \in a$.
|
||||
Then immediately $x \in a \cup \{a\}$.
|
||||
Thus there exists some $b$ such that $b \in a \cup \{a\}$ and $x \in b$,
|
||||
namely $b = \{a\}$.
|
||||
Thus $x \in \bigcup \left(a^+\right)$.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
We have shown both sides of \eqref{sub:theorem-4e-eq1} holds.
|
||||
By the \nameref{ref:extensionality-axiom}, $\bigcup \left(a^+\right) = a$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 4F}}%
|
||||
\hyperlabel{sub:theorem-4f}
|
||||
|
||||
\begin{theorem}[4F]
|
||||
|
||||
Every natural number is a transitive set.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $T = \{n \in \omega \mid n \text{ is a transitive set}\}$.
|
||||
We (i) prove that $T$ is an \nameref{ref:inductive-set} and then (ii) every
|
||||
natural number is a transitive set.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\label{par:theorem-4f-i}
|
||||
|
||||
First, $\emptyset \in T$ since it vacuously holds that a member of a
|
||||
member of $\emptyset$ is itself a member of $\emptyset$.
|
||||
Next, let $n \in T$ and consider whether $n^+ \in T$.
|
||||
Since $n$ is a transitive set, \nameref{sub:theorem-4e} implies
|
||||
$\bigcup \left(n^+\right) = n$.
|
||||
But $n \subseteq n^+ = n \cup \{n\}$.
|
||||
Thus $\bigcup \left(n^+\right) \subseteq n+$, i.e. $n^+$ is a transitive
|
||||
set.
|
||||
Therefore $n^+ \in T$.
|
||||
Hence $T$ is inductive.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Notice $T \subseteq \omega$.
|
||||
By \nameref{par:theorem-4f-i} and \nameref{sub:theorem-4b}, $T = \omega$.
|
||||
Thus every natural number is a transitive set.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 4G}}%
|
||||
\label{sub:theorem-4g}
|
||||
|
||||
\begin{theorem}[4G]
|
||||
|
||||
The set $\omega$ is a transitive set.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 4}%
|
||||
\hyperlabel{sec:exercises-4}
|
||||
|
||||
|
@ -6098,4 +6208,71 @@ Show that $1 \neq 3$ i.e., that $\emptyset^+ \neq \emptyset^{+++}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.2}}%
|
||||
\hyperlabel{sub:exercise-4.2}
|
||||
|
||||
Show that if $a$ is a transitive set, then $a^+$ is also a transitive set.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.3}}%
|
||||
\hyperlabel{sub:exercise-4.3}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item Show that if $a$ is a transitive set, then $\powerset{a}$ is also a
|
||||
transitive set.
|
||||
\item Show that if $\powerset{a}$ is a transitive set, then $a$ is also a
|
||||
transitive set.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.4}}%
|
||||
\hyperlabel{sub:exercise-4.4}
|
||||
|
||||
Show that if $a$ is a transitive set, then $\bigcup a$ is also a transitive set.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.5}}%
|
||||
\hyperlabel{sub:exercise-4.5}
|
||||
|
||||
Assume that every member of $\mathscr{A}$ is a transitive set.
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item Show that $\bigcup \mathscr{A}$ is a transitive set.
|
||||
\item Show that $\bigcap \mathscr{A}$ is a transitive set (assume that
|
||||
$\mathscr{A}$ is nonempty).
|
||||
\end{enumerate}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.6}}%
|
||||
\hyperlabel{sub:exercise-4.6}
|
||||
|
||||
Prove the converse to Theorem 4E: If $\bigcup \left(a^+\right) = a$, then $a$ is
|
||||
a transitive set.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -34,17 +34,7 @@ theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
|
|||
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
|
||||
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
|
||||
|
||||
/-! ## Characteristic Function -/
|
||||
|
||||
/--
|
||||
The characteristic function of a `Set` `S`.
|
||||
|
||||
It returns `1` if the specified input belongs to `S` and `0` otherwise.
|
||||
-/
|
||||
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
|
||||
if x ∈ S then 1 else 0
|
||||
|
||||
/-! ## Equality -/
|
||||
/-! ## Pair Sets -/
|
||||
|
||||
/--
|
||||
If `{x, y} = {x}` then `x = y`.
|
||||
|
|
|
@ -39,8 +39,9 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
|
|||
<ul>
|
||||
<li>
|
||||
<span style="color:darkgray">Dark gray statements </span> are
|
||||
reserved for definitions and axioms that have been encoded in both
|
||||
LaTeX and Lean.
|
||||
reserved for definitions and axioms that have been encoded in LaTeX.
|
||||
A corresponding reference to a definition/axiom in Lean may also be
|
||||
provided.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:teal">Teal statements </span> are reserved for
|
||||
|
@ -50,12 +51,13 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
|
|||
<li>
|
||||
<span style="color:olive">Olive statements </span> are reserved for
|
||||
statements, theorems, lemmas, etc. that have been proven in LaTeX
|
||||
and will not be proven in Lean.
|
||||
and will <i>not</i> be proven in Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:fuchsia">Fuchsia statements </span> are reserved
|
||||
for definitions, axioms, statements, theorems, lemmas, etc. that
|
||||
have been proven or encoded in LaTeX and will be encoded in Lean.
|
||||
have been proven or encoded in LaTeX and <i>will</i> be encoded in
|
||||
Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:maroon">Maroon </span> serves as a catch-all for
|
||||
|
|
Loading…
Reference in New Issue