Common coloring across definitions/axioms/statements.

finite-set-exercises
Joshua Potter 2023-05-12 18:29:02 -06:00
parent f5dfb9ff6b
commit da7f00753b
8 changed files with 25 additions and 32 deletions

View File

@ -132,7 +132,7 @@ $\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$.
\end{proof} \end{proof}
\subsection*{\proceeding{Exercise 4d}}% \subsection*{\partial{Exercise 4d}}%
\label{sub:exercise-4d} \label{sub:exercise-4d}
$\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$ $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
@ -148,7 +148,7 @@ $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
\end{proof} \end{proof}
\subsection*{\proceeding{Exercise 4e}}% \subsection*{\partial{Exercise 4e}}%
\label{sub:exercise-4e} \label{sub:exercise-4e}
$\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$ $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
@ -164,7 +164,7 @@ $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
\end{proof} \end{proof}
\section*{\proceeding{Exercise 5}}% \section*{\partial{Exercise 5}}%
\label{sec:exercise-5} \label{sec:exercise-5}
The formulas in Exercises 4(d) and 4(e) suggest a generalization for The formulas in Exercises 4(d) and 4(e) suggest a generalization for
@ -389,7 +389,7 @@ Derive this result by a geometric argument, counting lattice points in a right
\end{proof} \end{proof}
\subsection*{\proceeding{Exercise 7b}}% \subsection*{\partial{Exercise 7b}}%
\label{sub:exercise-7b} \label{sub:exercise-7b}
Derive the result analytically as follows: Derive the result analytically as follows:
@ -432,7 +432,7 @@ Now apply Exercises 4(a) and (b) to the bracket on the right.
\end{proof} \end{proof}
\section*{\proceeding{Exercise 8}}% \section*{\partial{Exercise 8}}%
\label{sec:exercise-8} \label{sec:exercise-8}
Let $S$ be a set of points on the real line. Let $S$ be a set of points on the real line.

View File

@ -10,7 +10,7 @@
\header{Useful Facts About Sets}{Herbert B. Enderton} \header{Useful Facts About Sets}{Herbert B. Enderton}
\section*{\proceeding{Lemma 0A}}% \section*{\unverified{Lemma 0A}}%
\label{sec:lemma-0a} \label{sec:lemma-0a}
Assume that $\langle x_1, \ldots, x_m \rangle = Assume that $\langle x_1, \ldots, x_m \rangle =

View File

@ -94,7 +94,7 @@ axiom rectangle_measurable (R : Rectangle)
axiom rectangle_area_eq_mul_edge_lengths (R : Rectangle) axiom rectangle_area_eq_mul_edge_lengths (R : Rectangle)
: area (rectangle_measurable R) = R.width * R.height : area (rectangle_measurable R) = R.width * R.height
/-! ## Exhaustion property /-! ## Exhaustion Property
Let `Q` be a set that can be enclosed between two step regions `S` and `T`, so Let `Q` be a set that can be enclosed between two step regions `S` and `T`, so
that (1.1) `S ⊆ Q ⊆ T`. If there is one and only one number `k` which satisfies that (1.1) `S ⊆ Q ⊆ T`. If there is one and only one number `k` which satisfies

View File

@ -71,7 +71,7 @@ If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
\end{axiom} \end{axiom}
\section*{\proceeding{Exhaustion Property}}% \section*{\partial{Exhaustion Property}}%
\label{sec:exhaustion-property} \label{sec:exhaustion-property}
Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so

View File

@ -8,7 +8,7 @@
\begin{document} \begin{document}
\section{\proceeding{Sum of Arithmetic Series}}% \section{\unverified{Sum of Arithmetic Series}}%
\label{sec:sum-arithmetic-series} \label{sec:sum-arithmetic-series}
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.

View File

@ -8,7 +8,7 @@
\begin{document} \begin{document}
\section{\proceeding{Sum of Geometric Series}}% \section{\unverified{Sum of Geometric Series}}%
\label{sec:sum-geometric-series} \label{sec:sum-geometric-series}
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.

View File

@ -37,23 +37,18 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
status: status:
<ul> <ul>
<li> <li>
<span style="color:darkgray">Dark gray statements </span> indicate <span style="color:teal">Teal statements </span> are those that
axioms and definitions. There must exist a corresponding have been proven or encoded in both LaTeX and Lean.
<code>axiom</code> or <code>def</code> in Lean.
</li> </li>
<li> <li>
<span style="color:teal">Teal statements </span> indicate those <span style="color:magenta">Magenta statements </span> are those
with complete proofs in both LaTeX <i>and </i> Lean. that have been proven or encoded in LaTeX but not yet verified in
Lean.
</li> </li>
<li> <li>
<span style="color:magenta">Magenta statements </span> indicate <span style="color:red">Red </span> serves as a catch-all for all
those that have not been completely proven in either LaTeX or Lean
(or both). Progress is currently being made to correct this though.
</li>
<li>
<span style="color:red">Red coloring </span> is a catch-all for all
statements that don't fit the above categorizations. Incomplete statements that don't fit the above categorizations. Incomplete
definitions, proofs only conducted in LaTeX, etc. belong here. definitions, statements without proof, etc. belong here.
</li> </li>
</ul> </ul>
</p> </p>

View File

@ -47,22 +47,20 @@
% Status % Status
% ======================================== % ========================================
% Indicates a statement corresponds to an axiom or definition. There must exist % Used for statements encoded in both LaTeX and Lean.
% a corresponding `axiom` or `def` in Lean.
\DeclareRobustCommand{\defined}[1]{% \DeclareRobustCommand{\defined}[1]{%
\texorpdfstring{\color{darkgray}\faParagraph\ #1}{#1}} \texorpdfstring{\color{teal}\faParagraph\ #1}{#1}}
% Indicates a statement has a complete proof in both LaTeX *and* Lean. % Used for statements proven in both LaTeX and Lean.
\DeclareRobustCommand{\verified}[1]{% \DeclareRobustCommand{\verified}[1]{%
\texorpdfstring{\color{teal}\faCheckCircle\ #1}{#1}} \texorpdfstring{\color{teal}\faCheckCircle\ #1}{#1}}
% Indicates a statement has not been completely proven in either LaTeX or % Used for statements proven or encoded in LaTeX but not yet in Lean.
% Lean (or both). Progress is currently being made to correct this though. \DeclareRobustCommand{\partial}[1]{%
\DeclareRobustCommand{\proceeding}[1]{% \texorpdfstring{\color{magenta}\faPencil*\ #1}{#1}}
\texorpdfstring{\color{magenta}\faDotCircle[regular]\ #1}{#1}}
% A catch-all status for anything that doesn't fit the above categories. % A catch-all for anything that doesn't fit the above categories. Incomplete
% Incomplete definitions, proofs only conducted in LaTeX, etc. belong here. % definitions, statements without proof, etc. belong here.
\DeclareRobustCommand{\unverified}[1]{% \DeclareRobustCommand{\unverified}[1]{%
\texorpdfstring{\color{red}\faExclamationCircle\ #1}{#1}} \texorpdfstring{\color{red}\faExclamationCircle\ #1}{#1}}