Drop Theorem 6A references.

fin-dom-ran
Joshua Potter 2023-11-12 11:44:57 -07:00
parent b596478a36
commit cdba12f161
3 changed files with 89 additions and 78 deletions

View File

@ -9304,8 +9304,8 @@
\begin{lemma} \begin{lemma}
Let $A \equin m$ for some natural number $m$ and $B \subseteq A$. Let $A \equin m$ for some natural number $m$ and $B \subseteq A$.
Then there exists some $n \in \omega$ such that $n \leq m$, $B \equin n$ and Then there exists some $n \in \omega$ such that $n \leq m$, $B \equin n$,
$A - B \equin m - n$. and $A - B \equin m - n$.
\end{lemma} \end{lemma}
\code{Bookshelf/Enderton/Set/Chapter\_6} \code{Bookshelf/Enderton/Set/Chapter\_6}
@ -9384,7 +9384,7 @@
& = (A - B) - \{a\} & \eqref{par:set-difference-size-ii-eq2} \\ & = (A - B) - \{a\} & \eqref{par:set-difference-size-ii-eq2} \\
& = A - B \\ & = A - B \\
& \equin m - n & \eqref{par:set-difference-size-ii-eq1} \\ & \equin m - n & \eqref{par:set-difference-size-ii-eq1} \\
& \equin m^+ - n^+ & \textref{sub:theorem-6a}. & \equin m^+ - n^+.
\end{align*} \end{align*}
\subparagraph{Case 2}% \subparagraph{Case 2}%
@ -9400,8 +9400,7 @@
between $(A - \{a\}) - B$ and $m - n$. between $(A - \{a\}) - B$ and $m - n$.
Therefore $g \cup \{\tuple{a, m}\}$ is a one-to-one correspondence Therefore $g \cup \{\tuple{a, m}\}$ is a one-to-one correspondence
between $A - B$ and $(m - n) \cup \{m\}$. between $A - B$ and $(m - n) \cup \{m\}$.
By \nameref{sub:theorem-6a}, Hence $$A - B \equin (m - n) \cup \{m\} \equin m^+ - n.$$
$$A - B \equin (m - n) \cup \{m\} \equin m^+ - n.$$
\subparagraph{Subconclusion}% \subparagraph{Subconclusion}%

View File

@ -1119,41 +1119,11 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
> `(A - {a} - (B - {a})) = (A - B) - {a}` > `(A - {a} - (B - {a})) = (A - B) - {a}`
> ` = A - B` > ` = A - B`
> ` ≈ m - n` *(6.4)* > ` ≈ m - n` *(6.4)*
> ` ≈ m⁺ - n⁺` *(Theorem 6A)* > ` ≈ m⁺ - n⁺`
-/ -/
rw [hA₁, hA₂] at hn₃ rw [hA₁, hA₂] at hn₃
suffices (Set.Iio m) \ (Set.Iio n) ≈ (Set.Iio m.succ) \ (Set.Iio n.succ) exact Set.equinumerous_trans hn₃
from Set.equinumerous_trans hn₃ this (Set.equinumerous_symm Set.succ_diff_succ_equinumerous_diff)
-- `m - n ≈ m⁺ - n⁺`
refine ⟨fun x => x + 1, ?_, ?_, ?_⟩
· intro x ⟨hx₁, hx₂⟩
simp at hx₁ hx₂ ⊢
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
· intro _ _ _ _ h
simp only [add_left_inj] at h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
intro x ⟨hx₁, hx₂⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_setOf_eq,
Set.mem_Iio
] at hx₁ hx₂ ⊢
have ⟨p, hp⟩ : ∃ p : , x = p.succ := by
refine Nat.exists_eq_succ_of_ne_zero ?_
have := calc 0
_ < n.succ := by simp
_ ≤ x := hx₂
exact Nat.pos_iff_ne_zero.mp this
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
· rw [hp] at hx₂
exact Nat.lt_succ.mp hx₂
· rw [hp] at hx₁
exact Nat.succ_lt_succ_iff.mp hx₁
/- /-
> ##### Case 2 > ##### Case 2
> Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and > Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and
@ -1223,49 +1193,11 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
· exact ⟨hy₁.left.left, hy₁.right⟩ · exact ⟨hy₁.left.left, hy₁.right⟩
· rwa [if_neg hy₁.left.right] · rwa [if_neg hy₁.left.right]
/- /-
> By *Theorem 6A* > Hence
> >
> `A - B ≈ (m - n) {m} ≈ m⁺ - n`. > `A - B ≈ (m - n) {m} ≈ m⁺ - n`.
-/ -/
suffices (Set.Iio m) \ (Set.Iio n) {m} ≈ (Set.Iio m.succ) \ (Set.Iio n) exact Set.equinumerous_trans hAB (Set.diff_union_equinumerous_succ_diff hn₁)
from Set.equinumerous_trans hAB this
refine ⟨fun x => x, ?_, ?_, ?_⟩
· intro x hx
simp at hx ⊢
apply Or.elim hx
· intro hx₁
rw [hx₁]
exact ⟨hn₁, by simp⟩
· intro ⟨hx₁, hx₂⟩
exact ⟨hx₁, calc x
_ < m := hx₂
_ < m + 1 := by simp⟩
· intro _ _ _ _ h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_Ico,
Set.union_singleton,
lt_self_iff_false,
and_false,
Set.mem_insert_iff,
exists_eq_right,
Set.mem_setOf_eq,
and_imp
]
intro x hn hm
apply Or.elim (Nat.lt_or_eq_of_lt hm)
· intro hx
right
exact ⟨hn, hx⟩
· intro hx
left
exact hx
/- /-
> ##### Subconclusion > ##### Subconclusion
> The above two cases are exhaustive and both conclude the existence of some > The above two cases are exhaustive and both conclude the existence of some

View File

@ -1,3 +1,5 @@
import Common.Nat.Basic
import Common.Set.Basic
import Mathlib.Data.Finset.Card import Mathlib.Data.Finset.Card
import Mathlib.Data.Set.Finite import Mathlib.Data.Set.Finite
@ -128,4 +130,82 @@ theorem equinumerous_emptyset_emptyset [Bot β]
· unfold SurjOn · unfold SurjOn
simp simp
/--
For all natural numbers `m, n`, `m⁺ - n⁺ ≈ m - n`.
-/
theorem succ_diff_succ_equinumerous_diff {m n : }
: Set.Iio m.succ \ Set.Iio n.succ ≈ Set.Iio m \ Set.Iio n := by
refine Set.equinumerous_symm ⟨fun x => x + 1, ?_, ?_, ?_⟩
· intro x ⟨hx₁, hx₂⟩
simp at hx₁ hx₂ ⊢
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
· intro _ _ _ _ h
simp only [add_left_inj] at h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
intro x ⟨hx₁, hx₂⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_setOf_eq,
Set.mem_Iio
] at hx₁ hx₂ ⊢
have ⟨p, hp⟩ : ∃ p : , x = p.succ := by
refine Nat.exists_eq_succ_of_ne_zero ?_
have := calc 0
_ < n.succ := by simp
_ ≤ x := hx₂
exact Nat.pos_iff_ne_zero.mp this
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
· rw [hp] at hx₂
exact Nat.lt_succ.mp hx₂
· rw [hp] at hx₁
exact Nat.succ_lt_succ_iff.mp hx₁
/--
For all natural numbers `m, n`, `m - n {m} ≈ m - n`.
-/
theorem diff_union_equinumerous_succ_diff {m n : } (hn: n ≤ m)
: Set.Iio m \ Set.Iio n {m} ≈ Set.Iio (Nat.succ m) \ Set.Iio n := by
refine ⟨fun x => x, ?_, ?_, ?_⟩
· intro x hx
simp at hx ⊢
apply Or.elim hx
· intro hx₁
rw [hx₁]
exact ⟨hn, by simp⟩
· intro ⟨hx₁, hx₂⟩
exact ⟨hx₁, calc x
_ < m := hx₂
_ < m + 1 := by simp⟩
· intro _ _ _ _ h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_Ico,
Set.union_singleton,
lt_self_iff_false,
and_false,
Set.mem_insert_iff,
exists_eq_right,
Set.mem_setOf_eq,
and_imp
]
intro x hn hm
apply Or.elim (Nat.lt_or_eq_of_lt hm)
· intro hx
right
exact ⟨hn, hx⟩
· intro hx
left
exact hx
end Set end Set