Drop Theorem 6A references.
parent
b596478a36
commit
cdba12f161
|
@ -9304,8 +9304,8 @@
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
Let $A \equin m$ for some natural number $m$ and $B \subseteq A$.
|
Let $A \equin m$ for some natural number $m$ and $B \subseteq A$.
|
||||||
Then there exists some $n \in \omega$ such that $n \leq m$, $B \equin n$ and
|
Then there exists some $n \in \omega$ such that $n \leq m$, $B \equin n$,
|
||||||
$A - B \equin m - n$.
|
and $A - B \equin m - n$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
||||||
|
@ -9384,7 +9384,7 @@
|
||||||
& = (A - B) - \{a\} & \eqref{par:set-difference-size-ii-eq2} \\
|
& = (A - B) - \{a\} & \eqref{par:set-difference-size-ii-eq2} \\
|
||||||
& = A - B \\
|
& = A - B \\
|
||||||
& \equin m - n & \eqref{par:set-difference-size-ii-eq1} \\
|
& \equin m - n & \eqref{par:set-difference-size-ii-eq1} \\
|
||||||
& \equin m^+ - n^+ & \textref{sub:theorem-6a}.
|
& \equin m^+ - n^+.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
\subparagraph{Case 2}%
|
\subparagraph{Case 2}%
|
||||||
|
@ -9400,8 +9400,7 @@
|
||||||
between $(A - \{a\}) - B$ and $m - n$.
|
between $(A - \{a\}) - B$ and $m - n$.
|
||||||
Therefore $g \cup \{\tuple{a, m}\}$ is a one-to-one correspondence
|
Therefore $g \cup \{\tuple{a, m}\}$ is a one-to-one correspondence
|
||||||
between $A - B$ and $(m - n) \cup \{m\}$.
|
between $A - B$ and $(m - n) \cup \{m\}$.
|
||||||
By \nameref{sub:theorem-6a},
|
Hence $$A - B \equin (m - n) \cup \{m\} \equin m^+ - n.$$
|
||||||
$$A - B \equin (m - n) \cup \{m\} \equin m^+ - n.$$
|
|
||||||
|
|
||||||
\subparagraph{Subconclusion}%
|
\subparagraph{Subconclusion}%
|
||||||
|
|
||||||
|
|
|
@ -1119,41 +1119,11 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
> `(A - {a} - (B - {a})) = (A - B) - {a}`
|
> `(A - {a} - (B - {a})) = (A - B) - {a}`
|
||||||
> ` = A - B`
|
> ` = A - B`
|
||||||
> ` ≈ m - n` *(6.4)*
|
> ` ≈ m - n` *(6.4)*
|
||||||
> ` ≈ m⁺ - n⁺` *(Theorem 6A)*
|
> ` ≈ m⁺ - n⁺`
|
||||||
-/
|
-/
|
||||||
rw [hA₁, hA₂] at hn₃
|
rw [hA₁, hA₂] at hn₃
|
||||||
suffices (Set.Iio m) \ (Set.Iio n) ≈ (Set.Iio m.succ) \ (Set.Iio n.succ)
|
exact Set.equinumerous_trans hn₃
|
||||||
from Set.equinumerous_trans hn₃ this
|
(Set.equinumerous_symm Set.succ_diff_succ_equinumerous_diff)
|
||||||
-- `m - n ≈ m⁺ - n⁺`
|
|
||||||
refine ⟨fun x => x + 1, ?_, ?_, ?_⟩
|
|
||||||
· intro x ⟨hx₁, hx₂⟩
|
|
||||||
simp at hx₁ hx₂ ⊢
|
|
||||||
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
|
|
||||||
· intro _ _ _ _ h
|
|
||||||
simp only [add_left_inj] at h
|
|
||||||
exact h
|
|
||||||
· unfold Set.SurjOn Set.image
|
|
||||||
rw [Set.subset_def]
|
|
||||||
intro x ⟨hx₁, hx₂⟩
|
|
||||||
simp only [
|
|
||||||
Set.Iio_diff_Iio,
|
|
||||||
gt_iff_lt,
|
|
||||||
not_lt,
|
|
||||||
ge_iff_le,
|
|
||||||
Set.mem_setOf_eq,
|
|
||||||
Set.mem_Iio
|
|
||||||
] at hx₁ hx₂ ⊢
|
|
||||||
have ⟨p, hp⟩ : ∃ p : ℕ, x = p.succ := by
|
|
||||||
refine Nat.exists_eq_succ_of_ne_zero ?_
|
|
||||||
have := calc 0
|
|
||||||
_ < n.succ := by simp
|
|
||||||
_ ≤ x := hx₂
|
|
||||||
exact Nat.pos_iff_ne_zero.mp this
|
|
||||||
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
|
|
||||||
· rw [hp] at hx₂
|
|
||||||
exact Nat.lt_succ.mp hx₂
|
|
||||||
· rw [hp] at hx₁
|
|
||||||
exact Nat.succ_lt_succ_iff.mp hx₁
|
|
||||||
/-
|
/-
|
||||||
> ##### Case 2
|
> ##### Case 2
|
||||||
> Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and
|
> Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and
|
||||||
|
@ -1223,49 +1193,11 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
· exact ⟨hy₁.left.left, hy₁.right⟩
|
· exact ⟨hy₁.left.left, hy₁.right⟩
|
||||||
· rwa [if_neg hy₁.left.right]
|
· rwa [if_neg hy₁.left.right]
|
||||||
/-
|
/-
|
||||||
> By *Theorem 6A*
|
> Hence
|
||||||
>
|
>
|
||||||
> `A - B ≈ (m - n) ∪ {m} ≈ m⁺ - n`.
|
> `A - B ≈ (m - n) ∪ {m} ≈ m⁺ - n`.
|
||||||
-/
|
-/
|
||||||
suffices (Set.Iio m) \ (Set.Iio n) ∪ {m} ≈ (Set.Iio m.succ) \ (Set.Iio n)
|
exact Set.equinumerous_trans hAB (Set.diff_union_equinumerous_succ_diff hn₁)
|
||||||
from Set.equinumerous_trans hAB this
|
|
||||||
refine ⟨fun x => x, ?_, ?_, ?_⟩
|
|
||||||
· intro x hx
|
|
||||||
simp at hx ⊢
|
|
||||||
apply Or.elim hx
|
|
||||||
· intro hx₁
|
|
||||||
rw [hx₁]
|
|
||||||
exact ⟨hn₁, by simp⟩
|
|
||||||
· intro ⟨hx₁, hx₂⟩
|
|
||||||
exact ⟨hx₁, calc x
|
|
||||||
_ < m := hx₂
|
|
||||||
_ < m + 1 := by simp⟩
|
|
||||||
· intro _ _ _ _ h
|
|
||||||
exact h
|
|
||||||
· unfold Set.SurjOn Set.image
|
|
||||||
rw [Set.subset_def]
|
|
||||||
simp only [
|
|
||||||
Set.Iio_diff_Iio,
|
|
||||||
gt_iff_lt,
|
|
||||||
not_lt,
|
|
||||||
ge_iff_le,
|
|
||||||
Set.mem_Ico,
|
|
||||||
Set.union_singleton,
|
|
||||||
lt_self_iff_false,
|
|
||||||
and_false,
|
|
||||||
Set.mem_insert_iff,
|
|
||||||
exists_eq_right,
|
|
||||||
Set.mem_setOf_eq,
|
|
||||||
and_imp
|
|
||||||
]
|
|
||||||
intro x hn hm
|
|
||||||
apply Or.elim (Nat.lt_or_eq_of_lt hm)
|
|
||||||
· intro hx
|
|
||||||
right
|
|
||||||
exact ⟨hn, hx⟩
|
|
||||||
· intro hx
|
|
||||||
left
|
|
||||||
exact hx
|
|
||||||
/-
|
/-
|
||||||
> ##### Subconclusion
|
> ##### Subconclusion
|
||||||
> The above two cases are exhaustive and both conclude the existence of some
|
> The above two cases are exhaustive and both conclude the existence of some
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
import Common.Nat.Basic
|
||||||
|
import Common.Set.Basic
|
||||||
import Mathlib.Data.Finset.Card
|
import Mathlib.Data.Finset.Card
|
||||||
import Mathlib.Data.Set.Finite
|
import Mathlib.Data.Set.Finite
|
||||||
|
|
||||||
|
@ -128,4 +130,82 @@ theorem equinumerous_emptyset_emptyset [Bot β]
|
||||||
· unfold SurjOn
|
· unfold SurjOn
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
/--
|
||||||
|
For all natural numbers `m, n`, `m⁺ - n⁺ ≈ m - n`.
|
||||||
|
-/
|
||||||
|
theorem succ_diff_succ_equinumerous_diff {m n : ℕ}
|
||||||
|
: Set.Iio m.succ \ Set.Iio n.succ ≈ Set.Iio m \ Set.Iio n := by
|
||||||
|
refine Set.equinumerous_symm ⟨fun x => x + 1, ?_, ?_, ?_⟩
|
||||||
|
· intro x ⟨hx₁, hx₂⟩
|
||||||
|
simp at hx₁ hx₂ ⊢
|
||||||
|
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
|
||||||
|
· intro _ _ _ _ h
|
||||||
|
simp only [add_left_inj] at h
|
||||||
|
exact h
|
||||||
|
· unfold Set.SurjOn Set.image
|
||||||
|
rw [Set.subset_def]
|
||||||
|
intro x ⟨hx₁, hx₂⟩
|
||||||
|
simp only [
|
||||||
|
Set.Iio_diff_Iio,
|
||||||
|
gt_iff_lt,
|
||||||
|
not_lt,
|
||||||
|
ge_iff_le,
|
||||||
|
Set.mem_setOf_eq,
|
||||||
|
Set.mem_Iio
|
||||||
|
] at hx₁ hx₂ ⊢
|
||||||
|
have ⟨p, hp⟩ : ∃ p : ℕ, x = p.succ := by
|
||||||
|
refine Nat.exists_eq_succ_of_ne_zero ?_
|
||||||
|
have := calc 0
|
||||||
|
_ < n.succ := by simp
|
||||||
|
_ ≤ x := hx₂
|
||||||
|
exact Nat.pos_iff_ne_zero.mp this
|
||||||
|
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
|
||||||
|
· rw [hp] at hx₂
|
||||||
|
exact Nat.lt_succ.mp hx₂
|
||||||
|
· rw [hp] at hx₁
|
||||||
|
exact Nat.succ_lt_succ_iff.mp hx₁
|
||||||
|
|
||||||
|
/--
|
||||||
|
For all natural numbers `m, n`, `m - n ∪ {m} ≈ m - n`.
|
||||||
|
-/
|
||||||
|
theorem diff_union_equinumerous_succ_diff {m n : ℕ} (hn: n ≤ m)
|
||||||
|
: Set.Iio m \ Set.Iio n ∪ {m} ≈ Set.Iio (Nat.succ m) \ Set.Iio n := by
|
||||||
|
refine ⟨fun x => x, ?_, ?_, ?_⟩
|
||||||
|
· intro x hx
|
||||||
|
simp at hx ⊢
|
||||||
|
apply Or.elim hx
|
||||||
|
· intro hx₁
|
||||||
|
rw [hx₁]
|
||||||
|
exact ⟨hn, by simp⟩
|
||||||
|
· intro ⟨hx₁, hx₂⟩
|
||||||
|
exact ⟨hx₁, calc x
|
||||||
|
_ < m := hx₂
|
||||||
|
_ < m + 1 := by simp⟩
|
||||||
|
· intro _ _ _ _ h
|
||||||
|
exact h
|
||||||
|
· unfold Set.SurjOn Set.image
|
||||||
|
rw [Set.subset_def]
|
||||||
|
simp only [
|
||||||
|
Set.Iio_diff_Iio,
|
||||||
|
gt_iff_lt,
|
||||||
|
not_lt,
|
||||||
|
ge_iff_le,
|
||||||
|
Set.mem_Ico,
|
||||||
|
Set.union_singleton,
|
||||||
|
lt_self_iff_false,
|
||||||
|
and_false,
|
||||||
|
Set.mem_insert_iff,
|
||||||
|
exists_eq_right,
|
||||||
|
Set.mem_setOf_eq,
|
||||||
|
and_imp
|
||||||
|
]
|
||||||
|
intro x hn hm
|
||||||
|
apply Or.elim (Nat.lt_or_eq_of_lt hm)
|
||||||
|
· intro hx
|
||||||
|
right
|
||||||
|
exact ⟨hn, hx⟩
|
||||||
|
· intro hx
|
||||||
|
left
|
||||||
|
exact hx
|
||||||
|
|
||||||
end Set
|
end Set
|
||||||
|
|
Loading…
Reference in New Issue