Remove Aviary_html.

finite-set-exercises
Joshua Potter 2023-05-07 10:40:20 -06:00
parent 24a48bfac2
commit cd8fec9483
2 changed files with 54 additions and 126 deletions

View File

@ -13,8 +13,7 @@ use. Their inclusion here serves more as pseudo-documentation than anything.
university press, 2000. university press, 2000.
-/ -/
/-- /-- #### Bald Eagle
#### Bald Eagle
`E'xy₁y₂y₃z₁z₂z₃ = x(y₁y₂y₃)(z₁z₂z₃)` `E'xy₁y₂y₃z₁z₂z₃ = x(y₁y₂y₃)(z₁z₂z₃)`
-/ -/
@ -22,36 +21,31 @@ def E' (x : α → β → γ)
(y₁ : δ → ε → α) (y₂ : δ) (y₃ : ε) (y₁ : δ → ε → α) (y₂ : δ) (y₃ : ε)
(z₁ : ζ → η → β) (z₂ : ζ) (z₃ : η) := x (y₁ y₂ y₃) (z₁ z₂ z₃) (z₁ : ζ → η → β) (z₂ : ζ) (z₃ : η) := x (y₁ y₂ y₃) (z₁ z₂ z₃)
/-- /-- #### Becard
#### Becard
`B₃xyzw = x(y(zw))` `B₃xyzw = x(y(zw))`
-/ -/
def B₃ (x : α → ε) (y : β → α) (z : γ → β) (w : γ) := x (y (z w)) def B₃ (x : α → ε) (y : β → α) (z : γ → β) (w : γ) := x (y (z w))
/-- /-- #### Blackbird
#### Blackbird
`B₁xyzw = x(yzw)` `B₁xyzw = x(yzw)`
-/ -/
def B₁ (x : α → ε) (y : β → γα) (z : β) (w : γ) := x (y z w) def B₁ (x : α → ε) (y : β → γα) (z : β) (w : γ) := x (y z w)
/-- /-- #### Bluebird
#### Bluebird
`Bxyz = x(yz)` `Bxyz = x(yz)`
-/ -/
def B (x : αγ) (y : β → α) (z : β) := x (y z) def B (x : αγ) (y : β → α) (z : β) := x (y z)
/-- /-- #### Bunting
#### Bunting
`B₂xyzwv = x(yzwv)` `B₂xyzwv = x(yzwv)`
-/ -/
def B₂ (x : α → ζ) (y : β → γ → ε → α) (z : β) (w : γ) (v : ε) := x (y z w v) def B₂ (x : α → ζ) (y : β → γ → ε → α) (z : β) (w : γ) (v : ε) := x (y z w v)
/-- /-- #### Cardinal Once Removed
#### Cardinal Once Removed
`C*xyzw = xywz` `C*xyzw = xywz`
-/ -/
@ -59,50 +53,48 @@ def C_star (x : α → β → γ → δ) (y : α) (z : γ) (w : β) := x y w z
notation "C*" => C_star notation "C*" => C_star
/-- /-- #### Cardinal
#### Cardinal
`Cxyz = xzy` `Cxyz = xzy`
-/ -/
def C (x : α → β → δ) (y : β) (z : α) := x z y def C (x : α → β → δ) (y : β) (z : α) := x z y
/-- /-- #### Converse Warbler
#### Converse Warbler
`W'xy = yxx` `W'xy = yxx`
-/ -/
def W' (x : α) (y : αα → β) := y x x def W' (x : α) (y : αα → β) := y x x
/-- /-- #### Dickcissel
#### Dickcissel
`D₁xyzwv = xyz(wv)` `D₁xyzwv = xyz(wv)`
-/ -/
def D₁ (x : α → β → δ → ε) (y : α) (z : β) (w : γ → δ) (v : γ) := x y z (w v) def D₁ (x : α → β → δ → ε) (y : α) (z : β) (w : γ → δ) (v : γ) := x y z (w v)
/-- /-! #### Double Mockingbird
#### Dove
`M₂xy = xy(xy)`
-/
/-- #### Dove
`Dxyzw = xy(zw)` `Dxyzw = xy(zw)`
-/ -/
def D (x : αγ → δ) (y : α) (z : β → γ) (w : β) := x y (z w) def D (x : αγ → δ) (y : α) (z : β → γ) (w : β) := x y (z w)
/-- /-- #### Dovekie
#### Dovekie
`D₂xyzwv = x(yz)(wv)` `D₂xyzwv = x(yz)(wv)`
-/ -/
def D₂ (x : α → δ → ε) (y : β → α) (z : β) (w : γ → δ) (v : γ) := x (y z) (w v) def D₂ (x : α → δ → ε) (y : β → α) (z : β) (w : γ → δ) (v : γ) := x (y z) (w v)
/-- /-- #### Eagle
#### Eagle
`Exyzwv = xy(zwv)` `Exyzwv = xy(zwv)`
-/ -/
def E (x : α → δ → ε) (y : α) (z : β → γ → δ) (w : β) (v : γ) := x y (z w v) def E (x : α → δ → ε) (y : α) (z : β → γ → δ) (w : β) (v : γ) := x y (z w v)
/-- /-- #### Finch Once Removed
#### Finch Once Removed
`F*xyzw = xwzy` `F*xyzw = xwzy`
-/ -/
@ -110,99 +102,95 @@ def F_star (x : α → β → γ → δ) (y : γ) (z : β) (w : α) := x w z y
notation "F*" => F_star notation "F*" => F_star
/-- /-- #### Finch
#### Finch
`Fxyz = zyx` `Fxyz = zyx`
-/ -/
def F (x : α) (y : β) (z : β → αγ) := z y x def F (x : α) (y : β) (z : β → αγ) := z y x
/-- /-- #### Goldfinch
#### Goldfinch
`Gxyzw = xw(yz)` `Gxyzw = xw(yz)`
-/ -/
def G (x : αγ → δ) (y : β → γ) (z : β) (w : α) := x w (y z) def G (x : αγ → δ) (y : β → γ) (z : β) (w : α) := x w (y z)
/-- /-- #### Hummingbird
#### Hummingbird
`Hxyz = xyzy` `Hxyz = xyzy`
-/ -/
def H (x : α → β → αγ) (y : α) (z : β) := x y z y def H (x : α → β → αγ) (y : α) (z : β) := x y z y
/-- /-- #### Identity Bird
#### Identity Bird
`Ix = x` `Ix = x`
-/ -/
def I (x : α) : α := x def I (x : α) : α := x
/-- /-- #### Kestrel
#### Kestrel
`Kxy = x` `Kxy = x`
-/ -/
def K (x : α) (_ : β) := x def K (x : α) (_ : β) := x
/-- /-! #### Lark
#### Owl
`Lxy = x(yy)`
-/
/-! #### Mockingbird
`Mx = xx`
-/
/-- #### Owl
`Oxy = y(xy)` `Oxy = y(xy)`
-/ -/
def O (x : (α → β) → α) (y : α → β) := y (x y) def O (x : (α → β) → α) (y : α → β) := y (x y)
/-- /-- #### Phoenix
#### Phoenix
`Φxyzw = x(yw)(zw)` `Φxyzw = x(yw)(zw)`
-/ -/
def Φ (x : β → γ → δ) (y : α → β) (z : αγ) (w : α) := x (y w) (z w) def Φ (x : β → γ → δ) (y : α → β) (z : αγ) (w : α) := x (y w) (z w)
/-- /-- #### Psi Bird
#### Psi Bird
`Ψxyzw = x(yz)(yw)` `Ψxyzw = x(yz)(yw)`
-/ -/
def Ψ (x : ααγ) (y : β → α) (z : β) (w : β) := x (y z) (y w) def Ψ (x : ααγ) (y : β → α) (z : β) (w : β) := x (y z) (y w)
/-- /-- #### Quacky Bird
#### Quacky Bird
`Q₄xyz = z(yx)` `Q₄xyz = z(yx)`
-/ -/
def Q₄ (x : α) (y : α → β) (z : β → γ) := z (y x) def Q₄ (x : α) (y : α → β) (z : β → γ) := z (y x)
/-- /-- #### Queer Bird
#### Queer Bird
`Qxyz = y(xz)` `Qxyz = y(xz)`
-/ -/
def Q (x : α → β) (y : β → γ) (z : α) := y (x z) def Q (x : α → β) (y : β → γ) (z : α) := y (x z)
/-- /-- #### Quirky Bird
#### Quirky Bird
`Q₃xyz = z(xy)` `Q₃xyz = z(xy)`
-/ -/
def Q₃ (x : α → β) (y : α) (z : β → γ) := z (x y) def Q₃ (x : α → β) (y : α) (z : β → γ) := z (x y)
/-- /-- #### Quixotic Bird
#### Quixotic Bird
`Q₁xyz = x(zy)` `Q₁xyz = x(zy)`
-/ -/
def Q₁ (x : αγ) (y : β) (z : β → α) := x (z y) def Q₁ (x : αγ) (y : β) (z : β → α) := x (z y)
/-- /-- #### Quizzical Bird
#### Quizzical Bird
`Q₂xyz = y(zx)` `Q₂xyz = y(zx)`
-/ -/
def Q₂ (x : α) (y : β → γ) (z : α → β) := y (z x) def Q₂ (x : α) (y : β → γ) (z : α → β) := y (z x)
/-- /-- #### Robin Once Removed
#### Robin Once Removed
`R*xyzw = xzwy` `R*xyzw = xzwy`
-/ -/
@ -210,36 +198,36 @@ def R_star (x : α → β → γ → δ) (y : γ) (z : α) (w : β) := x z w y
notation "R*" => R_star notation "R*" => R_star
/-- /-- #### Robin
#### Robin
`Rxyz = yzx` `Rxyz = yzx`
-/ -/
def R (x : α) (y : β → αγ) (z : β) := y z x def R (x : α) (y : β → αγ) (z : β) := y z x
/-- /-- #### Sage Bird
#### Sage Bird
`Θx = x(Θx)` `Θx = x(Θx)`
-/ -/
partial def Θ [Inhabited α] (x : αα) := x (Θ x) partial def Θ [Inhabited α] (x : αα) := x (Θ x)
/-- /-- #### Starling
#### Starling
`Sxyz = xz(yz)` `Sxyz = xz(yz)`
-/ -/
def S (x : α → β → γ) (y : α → β) (z : α) := x z (y z) def S (x : α → β → γ) (y : α → β) (z : α) := x z (y z)
/-- /-- #### Thrush
#### Thrush
`Txy = yx` `Txy = yx`
-/ -/
def T (x : α) (y : α → β) := y x def T (x : α) (y : α → β) := y x
/-- /-! #### Turing Bird
#### Vireo Once Removed
`Uxy = y(xxy)`
-/
/-- #### Vireo Once Removed
`V*xyzw = xwyz` `V*xyzw = xwyz`
-/ -/
@ -247,15 +235,13 @@ def V_star (x : α → β → γ → δ) (y : β) (z : γ) (w : α) := x w y z
notation "V*" => V_star notation "V*" => V_star
/-- /-- #### Vireo
#### Vireo
`Vxyz = zxy` `Vxyz = zxy`
-/ -/
def V (x : α) (y : β) (z : α → β → γ) := z x y def V (x : α) (y : β) (z : α → β → γ) := z x y
/-- /-- #### Warbler
#### Warbler
`Wxy = xyy` `Wxy = xyy`
-/ -/

View File

@ -1,58 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>Bookshelf.Combinator.Aviary</title>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<h1>Bookshelf.Combinator.Aviary</h1>
<p>
A list of birds as defined in <i>To Mock a Mockingbird</i>.
Refer to <a href="./Aviary.html">Bookshelf/Combinator/Aviary</a>
for implementation examples.
</p>
<ul>
<li><b>Bald Eagle:</b> \(\hat{E}xy_1y_2y_3z_1z_2z_3 = x(y_1y_2y_3)(z_1z_2z_3)\)</li>
<li><b>Becard:</b> \(B_3xyzw = x(y(zw))\)</li>
<li><b>Blackbird:</b> \(B_1xyzw = x(yzw)\)</li>
<li><b>Bluebird:</b> \(Bxyz = x(yz)\)</li>
<li><b>Bunting:</b> \(B_2xyzwv = x(yzwv)\)</li>
<li><b>Cardinal Once Removed:</b> \(C^*xyzw = xywz\)</li>
<li><b>Cardinal:</b> \(Cxyz = xzy\)</li>
<li><b>Converse Warbler:</b> \(W'xy = yxx\)</li>
<li><b>Dickcissel:</b> \(D_1xyzwv = xyz(wv)\)</li>
<li><b>Double Mockingbird:</b> \(M_2xy = xy(xy)\)</li>
<li><b>Dove:</b> \(Dxyzw = xy(zw)\)</li>
<li><b>Dovekie:</b> \(D_2xyzwv = x(yz)(wv)\)</li>
<li><b>Eagle:</b> \(Exyzwv = xy(zwv)\)</li>
<li><b>Finch Once Removed:</b> \(F^*xyzw = xwzy\)</li>
<li><b>Finch:</b> \(Fxyz = zyx\)</li>
<li><b>Goldfinch:</b> \(Gxyzw = xw(yz)\)</li>
<li><b>Hummingbird:</b> \(Hxyz = xyzy\)</li>
<li><b>Identity Bird:</b> \(Ix = x\)</li>
<li><b>Kestrel:</b> \(Kxy = x\)</li>
<li><b>Lark:</b> \(Lxy = x(yy)\)</li>
<li><b>Mockingbird:</b> \(Mx = xx\)</li>
<li><b>Owl:</b> \(Oxy = y(xy)\)</li>
<li><b>Phoenix:</b> \(\Phi xyzw = x(yw)(zw)\)</li>
<li><b>Psi Bird:</b> \(\Psi xyzw = x(yz)(yw)\)</li>
<li><b>Quacky Bird:</b> \(Q_4xyz = z(yx)\)</li>
<li><b>Queer Bird:</b> \(Qxyz = y(xz)\)</li>
<li><b>Quirky Bird:</b> \(Q_3xyz = z(xy)\)</li>
<li><b>Quixotic Bird:</b> \(Q_1xyz = x(zy)\)</li>
<li><b>Quizzical Bird:</b> \(Q_2xyz = y(zx)\)</li>
<li><b>Robin Once Removed:</b> \(R^*xyzw = xzwy\)</li>
<li><b>Robin:</b> \(Rxyz = yzx\)</li>
<li><b>Sage Bird:</b> \(\Theta x = x(\Theta x)\)</li>
<li><b>Starling:</b> \(Sxyz = xz(yz)\)</li>
<li><b>Thrush:</b> \(Txy = yx\)</li>
<li><b>Turing Bird:</b> \(Uxy = y(xxy)\)</li>
<li><b>Vireo Once Removed:</b> \(V^*xyzw = xwyz\)</li>
<li><b>Vireo:</b> \(Vxyz = zxy\)</li>
<li><b>Warbler:</b> \(Wxy = xyy\)</li>
</ul>
</body>
</html>