I_3_10 Apostol.
Also introduced notion of "preamble" to share amongst tex docs.finite-set-exercises
parent
4ec24b6e1c
commit
cac78666db
|
@ -1,13 +1,6 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{custominner}{Theorem}
|
||||
\newenvironment{custom}[1]{%
|
||||
\renewcommand\thecustominner{#1}%
|
||||
\custominner
|
||||
}{\endcustominner}
|
||||
\input{../../preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -21,7 +14,7 @@ $$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\href{Arithmetic.lean}{Common.Sequence.Arithmetic.sum\_recursive\_closed}
|
||||
\href{Arithmetic.lean}{Common.Sequence.Arithmetic.sum_recursive_closed}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -1,13 +1,6 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{custominner}{Theorem}
|
||||
\newenvironment{custom}[1]{%
|
||||
\renewcommand\thecustominner{#1}%
|
||||
\custominner
|
||||
}{\endcustominner}
|
||||
\input{../../preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -21,7 +14,7 @@ $$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\href{Geometric.lean}{Common.Sequence.Geometric.sum\_recursive\_closed}
|
||||
\href{Geometric.lean}{Common.Sequence.Geometric.sum_recursive_closed}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{underscore}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{xtheoreminner}{Theorem}
|
||||
\newenvironment{xtheorem}[1]{%
|
||||
\renewcommand\thextheoreminner{#1}%
|
||||
\xtheoreminner
|
||||
}{\endxtheoreminner}
|
||||
|
||||
\hypersetup{colorlinks=true, urlcolor=blue}
|
|
@ -1,13 +1,6 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{custominner}{Theorem}
|
||||
\newenvironment{custom}[1]{%
|
||||
\renewcommand\thecustominner{#1}%
|
||||
\custominner
|
||||
}{\endcustominner}
|
||||
\input{../../common/preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -20,7 +13,7 @@ Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter0.lean}{Enderton.Chapter0.lemma\_0a}
|
||||
\href{Chapter0.lean}{Enderton.Chapter0.lemma_0a}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -27,7 +27,7 @@ lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by
|
|||
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
||||
|
||||
/--
|
||||
Theorem 1.29
|
||||
Theorem I.29
|
||||
|
||||
For every real `x` there exists a positive integer `n` such that `n > x`.
|
||||
-/
|
||||
|
@ -40,14 +40,14 @@ theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by
|
|||
exact ⟨x', h⟩
|
||||
|
||||
/--
|
||||
Theorem 1.30
|
||||
Theorem I.30
|
||||
|
||||
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
||||
integer `n` such that `nx > y`.
|
||||
|
||||
This is known as the *Archimedean Property of the Reals*.
|
||||
-/
|
||||
theorem pos_imp_exists_pnat_mul_self_geq {x y : ℝ}
|
||||
theorem exists_pnat_mul_self_geq_of_pos {x y : ℝ}
|
||||
: x > 0 → ∃ n : ℕ+, n * x > y := by
|
||||
intro hx
|
||||
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
|
||||
|
@ -55,4 +55,36 @@ theorem pos_imp_exists_pnat_mul_self_geq {x y : ℝ}
|
|||
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
||||
exact ⟨n, p'⟩
|
||||
|
||||
/--
|
||||
Theorem I.31
|
||||
|
||||
If three real numbers `a`, `x`, and `y` satisfy the inequalities
|
||||
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
|
||||
-/
|
||||
theorem forall_pnat_leq_self_leq_frac_iff_eq {x y a : ℝ}
|
||||
: (∀ n : ℕ+, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
|
||||
intro h
|
||||
match @trichotomous ℝ LT.lt _ x a with
|
||||
| -- x = a
|
||||
Or.inr (Or.inl r) => exact r
|
||||
| -- x < a
|
||||
Or.inl r =>
|
||||
have z : a < a := lt_of_le_of_lt (h 1).left r
|
||||
simp at z
|
||||
| -- x > a
|
||||
Or.inr (Or.inr r) =>
|
||||
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
|
||||
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
|
||||
have hn := mul_lt_mul_of_pos_left hn $
|
||||
have hp : 0 < (↑↑n : ℝ) := by simp
|
||||
show 0 < ((↑↑n)⁻¹ : ℝ) from inv_pos.mpr hp
|
||||
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ℝ), ←one_div, mul_one_div] at hn
|
||||
simp at hn
|
||||
have hn := add_lt_add_left hn a
|
||||
have := calc a + y / ↑↑n
|
||||
_ < a + c := hn
|
||||
_ = x := hc.right
|
||||
_ ≤ a + y / ↑↑n := (h n).right
|
||||
simp at this
|
||||
|
||||
end Real
|
||||
|
|
|
@ -1,37 +1,44 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{custominner}{Theorem}
|
||||
\newenvironment{custom}[1]{%
|
||||
\renewcommand\thecustominner{#1}%
|
||||
\custominner
|
||||
}{\endcustominner}
|
||||
\input{../../common/preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{custom}{1.29}
|
||||
\begin{xtheorem}{1.29}
|
||||
|
||||
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||
|
||||
\end{custom}
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.exists\_pnat\_geq\_self}
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_geq_self}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{custom}{1.30}[Archimedean Property of the Reals]
|
||||
\begin{xtheorem}{1.30}[Archimedean Property of the Reals]
|
||||
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
|
||||
|
||||
\end{custom}
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.pos\_imp\_exists\_pnat\_mul\_self\_geq}
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_mul_self_geq_of_pos}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{1.31}
|
||||
|
||||
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||
$$a \leq x \leq a + \frac{y}{n}$$
|
||||
for every integer $n \geq 1$, then $x = a$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.forall_pnat_leq_self_leq_frac_iff_eq}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
Loading…
Reference in New Issue