I_3_10 Apostol.

Also introduced notion of "preamble" to share amongst tex docs.
finite-set-exercises
Joshua Potter 2023-04-10 06:56:47 -06:00
parent 4ec24b6e1c
commit cac78666db
6 changed files with 74 additions and 44 deletions

View File

@ -1,13 +1,6 @@
\documentclass{article} \documentclass{article}
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\newtheorem{theorem}{Theorem} \input{../../preamble}
\newtheorem{custominner}{Theorem}
\newenvironment{custom}[1]{%
\renewcommand\thecustominner{#1}%
\custominner
}{\endcustominner}
\begin{document} \begin{document}
@ -21,7 +14,7 @@ $$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
\begin{proof} \begin{proof}
\href{Arithmetic.lean}{Common.Sequence.Arithmetic.sum\_recursive\_closed} \href{Arithmetic.lean}{Common.Sequence.Arithmetic.sum_recursive_closed}
\end{proof} \end{proof}

View File

@ -1,13 +1,6 @@
\documentclass{article} \documentclass{article}
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\newtheorem{theorem}{Theorem} \input{../../preamble}
\newtheorem{custominner}{Theorem}
\newenvironment{custom}[1]{%
\renewcommand\thecustominner{#1}%
\custominner
}{\endcustominner}
\begin{document} \begin{document}
@ -21,7 +14,7 @@ $$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
\begin{proof} \begin{proof}
\href{Geometric.lean}{Common.Sequence.Geometric.sum\_recursive\_closed} \href{Geometric.lean}{Common.Sequence.Geometric.sum_recursive_closed}
\end{proof} \end{proof}

12
common/preamble.tex Normal file
View File

@ -0,0 +1,12 @@
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\usepackage{underscore}
\newtheorem{theorem}{Theorem}
\newtheorem{xtheoreminner}{Theorem}
\newenvironment{xtheorem}[1]{%
\renewcommand\thextheoreminner{#1}%
\xtheoreminner
}{\endxtheoreminner}
\hypersetup{colorlinks=true, urlcolor=blue}

View File

@ -1,13 +1,6 @@
\documentclass{article} \documentclass{article}
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\newtheorem{theorem}{Theorem} \input{../../common/preamble}
\newtheorem{custominner}{Theorem}
\newenvironment{custom}[1]{%
\renewcommand\thecustominner{#1}%
\custominner
}{\endcustominner}
\begin{document} \begin{document}
@ -20,7 +13,7 @@ Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
\begin{proof} \begin{proof}
\href{Chapter0.lean}{Enderton.Chapter0.lemma\_0a} \href{Chapter0.lean}{Enderton.Chapter0.lemma_0a}
\end{proof} \end{proof}

View File

@ -27,7 +27,7 @@ lemma leq_nat_abs_ceil_self (x : ) : x ≤ Int.natAbs ⌈x⌉ := by
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h' _ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
/-- /--
Theorem 1.29 Theorem I.29
For every real `x` there exists a positive integer `n` such that `n > x`. For every real `x` there exists a positive integer `n` such that `n > x`.
-/ -/
@ -40,14 +40,14 @@ theorem exists_pnat_geq_self (x : ) : ∃ n : +, ↑n > x := by
exact ⟨x', h⟩ exact ⟨x', h⟩
/-- /--
Theorem 1.30 Theorem I.30
If `x > 0` and if `y` is an arbitrary real number, there exists a positive If `x > 0` and if `y` is an arbitrary real number, there exists a positive
integer `n` such that `nx > y`. integer `n` such that `nx > y`.
This is known as the *Archimedean Property of the Reals*. This is known as the *Archimedean Property of the Reals*.
-/ -/
theorem pos_imp_exists_pnat_mul_self_geq {x y : } theorem exists_pnat_mul_self_geq_of_pos {x y : }
: x > 0 → ∃ n : +, n * x > y := by : x > 0 → ∃ n : +, n * x > y := by
intro hx intro hx
let ⟨n, p⟩ := exists_pnat_geq_self (y / x) let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
@ -55,4 +55,36 @@ theorem pos_imp_exists_pnat_mul_self_geq {x y : }
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p' rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
exact ⟨n, p'⟩ exact ⟨n, p'⟩
/--
Theorem I.31
If three real numbers `a`, `x`, and `y` satisfy the inequalities
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
-/
theorem forall_pnat_leq_self_leq_frac_iff_eq {x y a : }
: (∀ n : +, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
intro h
match @trichotomous LT.lt _ x a with
| -- x = a
Or.inr (Or.inl r) => exact r
| -- x < a
Or.inl r =>
have z : a < a := lt_of_le_of_lt (h 1).left r
simp at z
| -- x > a
Or.inr (Or.inr r) =>
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
have hn := mul_lt_mul_of_pos_left hn $
have hp : 0 < (↑↑n : ) := by simp
show 0 < ((↑↑n)⁻¹ : ) from inv_pos.mpr hp
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ), ←one_div, mul_one_div] at hn
simp at hn
have hn := add_lt_add_left hn a
have := calc a + y / ↑↑n
_ < a + c := hn
_ = x := hc.right
_ ≤ a + y / ↑↑n := (h n).right
simp at this
end Real end Real

View File

@ -1,37 +1,44 @@
\documentclass{article} \documentclass{article}
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\newtheorem{theorem}{Theorem} \input{../../common/preamble}
\newtheorem{custominner}{Theorem}
\newenvironment{custom}[1]{%
\renewcommand\thecustominner{#1}%
\custominner
}{\endcustominner}
\begin{document} \begin{document}
\begin{custom}{1.29} \begin{xtheorem}{1.29}
For every real $x$ there exists a positive integer $n$ such that $n > x$. For every real $x$ there exists a positive integer $n$ such that $n > x$.
\end{custom} \end{xtheorem}
\begin{proof} \begin{proof}
\href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.exists\_pnat\_geq\_self} \href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_geq_self}
\end{proof} \end{proof}
\begin{custom}{1.30}[Archimedean Property of the Reals] \begin{xtheorem}{1.30}[Archimedean Property of the Reals]
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$. If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
\end{custom} \end{xtheorem}
\begin{proof} \begin{proof}
\href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.pos\_imp\_exists\_pnat\_mul\_self\_geq} \href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_mul_self_geq_of_pos}
\end{proof}
\begin{xtheorem}{1.31}
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a \leq x \leq a + \frac{y}{n}$$
for every integer $n \geq 1$, then $x = a$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.forall_pnat_leq_self_leq_frac_iff_eq}
\end{proof} \end{proof}