diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index 16471d7..a836dad 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -8,9 +8,7 @@ \newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}} \newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}} - \newcommand{\ubar}[1]{\text{\b{$#1$}}} -\newcommand{\aliasref}[2]{\hyperref[#1]{#2}} \begin{document} @@ -107,8 +105,8 @@ The \textbf{integral of $s$ from $a$ to $b$}, denoted by the symbol If $a < b$, we define $\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}$. We also define $\int_a^a s(x) \mathop{dx} = 0$. -\section{\partial{Lower Integral of \texorpdfstring{$f$}{f}}}% -\label{sec:def-lower-integral-f} +\section{\partial{Lower Integral}}% +\label{sec:def-lower-integral} Let $f$ be a function bounded on $[a, b]$ and $S$ denote the set of numbers $\int_a^b s(x) \mathop{dx}$ obtained as $s$ runs through all @@ -117,6 +115,20 @@ That is, let $$S = \left\{ \int_a^b s(x) \mathop{dx} : s \leq f \right\}.$$ The number $\sup{S}$ is called the \textbf{lower integral of $f$}. It is denoted as $\ubar{I}(f)$. +\section{\partial{Monotonic}}% +\label{sec:def-monotonic} + +A function $f$ is called \textbf{monotonic} on set $S$ if it is increasing on + $S$ or if it is decreasing on $S$. +$f$ is said to be \textbf{strictly monotonic} if it is strictly increasing on + $S$ or strictly decreasing on $S$. + +A function $f$ is said to be \textbf{piecewise monotonic} on an interval if its + graph consists of a finite number of monotonic pieces. +In other words, $f$ is piecewise monotonic on $[a, b]$ if there is a + \nameref{sec:def-partition} of $[a, b]$ such that $f$ is monotonic on each of + the open subintervals of $P$. + \section{\defined{Partition}}% \label{sec:def-partition} @@ -188,8 +200,8 @@ Such a number $B$ is also known as the \textbf{least upper bound}. \end{definition} -\section{\partial{Upper Integral of \texorpdfstring{$f$}{f}}}% -\label{sec:def-upper-integral-f} +\section{\partial{Upper Integral}}% +\label{sec:def-upper-integral} Let $f$ be a function bounded on $[a, b]$ and $T$ denote the set of numbers $\int_a^b t(x) \mathop{dx}$ obtained as $t$ runs through all @@ -216,7 +228,11 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \section{\verified{Lemma 1}}% \label{sec:lemma-1} -Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$. +\begin{lemma}{1} + + Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$. + +\end{lemma} \begin{proof} @@ -237,8 +253,12 @@ Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$. \section{\verified{Theorem I.27}}% \label{sec:theorem-i.27} -Every nonempty set $S$ that is bounded below has a greatest lower bound; that - is, there is a real number $L$ such that $L = \inf{S}$. +\begin{theorem}{I.27} + + Every nonempty set $S$ that is bounded below has a greatest lower bound; that + is, there is a real number $L$ such that $L = \inf{S}$. + +\end{theorem} \begin{proof} @@ -259,7 +279,11 @@ Every nonempty set $S$ that is bounded below has a greatest lower bound; that \section{\verified{Theorem I.29}}% \label{sec:theorem-i.29} -For every real $x$ there exists a positive integer $n$ such that $n > x$. +\begin{theorem}{I.29} + + For every real $x$ there exists a positive integer $n$ such that $n > x$. + +\end{theorem} \begin{proof} @@ -279,11 +303,14 @@ For every real $x$ there exists a positive integer $n$ such that $n > x$. \section{\verified{Archimedean Property of the Reals}}% \label{sec:archimedean-property-reals} +\label{sec:theorem-i.30} -If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive - integer $n$ such that $nx > y$. +\begin{theorem}{I.30} -\note{This is known as the "Archimedean Property of the Reals."} + If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive + integer $n$ such that $nx > y$. + +\end{theorem} \begin{proof} @@ -302,8 +329,13 @@ If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive \section{\verified{Theorem I.31}}% \label{sec:theorem-i.31} -If three real numbers $a$, $x$, and $y$ satisfy the inequalities - $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then $x = a$. +\begin{theorem}{I.31} + + If three real numbers $a$, $x$, and $y$ satisfy the inequalities + $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then + $x = a$. + +\end{theorem} \begin{proof} @@ -346,8 +378,12 @@ If three real numbers $a$, $x$, and $y$ satisfy the inequalities \section{\verified{Lemma 2}}% \label{sec:lemma-2} -If three real numbers $a$, $x$, and $y$ satisfy the inequalities - $$a - y / n \leq x \leq a$$ for every integer $n \geq 1$, then $x = a$. +\begin{lemma}{2} + + If three real numbers $a$, $x$, and $y$ satisfy the inequalities + $$a - y / n \leq x \leq a$$ for every integer $n \geq 1$, then $x = a$. + +\end{lemma} \begin{proof} @@ -395,7 +431,11 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers. \subsection{\verified{Theorem I.32a}}% \label{sub:theorem-i.32a} -If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$. +\begin{theorem}{I.32a} + + If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$. + +\end{theorem} \begin{proof} @@ -419,7 +459,11 @@ If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$. \subsection{\verified{Theorem I.32b}}% \label{sub:theorem-i.32b} -If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$. +\begin{theorem}{I.32b} + + If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$. + +\end{theorem} \begin{proof} @@ -451,8 +495,12 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \subsection{\verified{Theorem I.33a}}% \label{sub:theorem-i.33a} -If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and - $$\sup{C} = \sup{A} + \sup{B}.$$ +\begin{theorem}{I.33a} + + If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and + $$\sup{C} = \sup{A} + \sup{B}.$$ + +\end{theorem} \begin{proof} @@ -520,8 +568,12 @@ If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and \subsection{\verified{Theorem I.33b}}% \label{sub:theorem-i.33b} -If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and - $$\inf{C} = \inf{A} + \inf{B}.$$ +\begin{theorem}{I.33b} + + If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and + $$\inf{C} = \inf{A} + \inf{B}.$$ + +\end{theorem} \begin{proof} @@ -589,9 +641,13 @@ If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and \section{\verified{Theorem I.34}}% \label{sec:theorem-i.34} -Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ - for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ - has an infimum, and they satisfy the inequality $$\sup{S} \leq \inf{T}.$$ +\begin{theorem}{I.34} + + Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ + for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ + has an infimum, and they satisfy the inequality $$\sup{S} \leq \inf{T}.$$ + +\end{theorem} \begin{proof} @@ -1749,11 +1805,17 @@ This property is described by saying that every step function is a linear \section{\partial{Additive Property}}% \label{sec:step-additive-property} +\label{sec:theorem-1.2} -Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval $[a, b]$. -Then - $$\int_a^b \left[ s(x) + t(x) \right] \mathop{dx} = - \int_a^b s(x) \mathop{dx} + \int_a^b t(x) \mathop{dx}.$$ +\begin{theorem}{1.2} + + Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval + $[a, b]$. + Then + $$\int_a^b \left[ s(x) + t(x) \right] \mathop{dx} = + \int_a^b s(x) \mathop{dx} + \int_a^b t(x) \mathop{dx}.$$ + +\end{theorem} \begin{proof} @@ -1786,10 +1848,15 @@ Then \section{\partial{Homogeneous Property}}% \label{sec:step-homogeneous-property} +\label{sec:theorem-1.3} -Let $s$ be a \nameref{sec:def-step-function} on closed interval $[a, b]$. -For every real number $c$, we have - $$\int_a^b c \cdot s(x) \mathop{dx} = c\int_a^b s(x) \mathop{dx}.$$ +\begin{theorem}{1.3} + + Let $s$ be a \nameref{sec:def-step-function} on closed interval $[a, b]$. + For every real number $c$, we have + $$\int_a^b c \cdot s(x) \mathop{dx} = c\int_a^b s(x) \mathop{dx}.$$ + +\end{theorem} \begin{proof} @@ -1812,11 +1879,17 @@ For every real number $c$, we have \section{\partial{Linearity Property}}% \label{sec:step-linearity-property} +\label{sec:theorem-1.4} -Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval $[a, b]$. -For every real $c_1$ and $c_2$, we have - $$\int_a^b \left[ c_1s(x) + c_2t(x) \right] \mathop{dx} = - c_1\int_a^b s(x) \mathop{dx} + c_2\int_a^b t(x) \mathop{dx}.$$ +\begin{theorem}{1.4} + + Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval + $[a, b]$. + For every real $c_1$ and $c_2$, we have + $$\int_a^b \left[ c_1s(x) + c_2t(x) \right] \mathop{dx} = + c_1\int_a^b s(x) \mathop{dx} + c_2\int_a^b t(x) \mathop{dx}.$$ + +\end{theorem} \begin{proof} @@ -1836,10 +1909,16 @@ For every real $c_1$ and $c_2$, we have \section{\partial{Comparison Theorem}}% \label{sec:step-comparison-theorem} +\label{sec:theorem-1.5} -Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval $[a, b]$. -If $s(x) < t(x)$ for every $x$ in $[a, b]$, then - $$\int_a^b s(x) \mathop{dx} < \int_a^b t(x) \mathop{dx}.$$ +\begin{theorem}{1.5} + + Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval + $[a, b]$. + If $s(x) < t(x)$ for every $x$ in $[a, b]$, then + $$\int_a^b s(x) \mathop{dx} < \int_a^b t(x) \mathop{dx}.$$ + +\end{theorem} \begin{proof} @@ -1869,12 +1948,17 @@ If $s(x) < t(x)$ for every $x$ in $[a, b]$, then \section{\partial{Additivity With Respect to the Interval of Integration}}% \label{sec:step-additivity-with-respect-interval-integration} +\label{sec:theorem-1.6} -Let $a, b, c \in \mathbb{R}$ and $s$ a \nameref{sec:def-step-function} on the - smallest closed interval containing them. -Then - $$\int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx} + - \int_b^a s(x) \mathop{dx} = 0.$$ +\begin{theorem}{1.6} + + Let $a, b, c \in \mathbb{R}$ and $s$ a \nameref{sec:def-step-function} on the + smallest closed interval containing them. + Then + $$\int_a^c s(x) \mathop{dx} + \int_c^b s(x) \mathop{dx} + + \int_b^a s(x) \mathop{dx} = 0.$$ + +\end{theorem} \begin{proof} @@ -1910,11 +1994,16 @@ Then \section{\partial{Invariance Under Translation}}% \label{sec:step-invariance-under-translation} +\label{sec:theorem-1.7} -Let $s$ be a step function on closed interval $[a, b]$. -Then - $$\int_a^b s(x) \mathop{dx} = - \int_{a+c}^{b+x} s(x - c) \mathop{dx} \quad\text{for every real } c.$$ +\begin{theorem}{1.7} + + Let $s$ be a step function on closed interval $[a, b]$. + Then + $$\int_a^b s(x) \mathop{dx} = + \int_{a+c}^{b+x} s(x - c) \mathop{dx} \quad\text{for every real } c.$$ + +\end{theorem} \begin{proof} @@ -1946,11 +2035,16 @@ Then \section{\partial{Expansion or Contraction of the Interval of Integration}}% \label{sec:step-expansion-contraction-interval-integration} +\label{sec:theorem-1.8} -Let $s$ be a step function on closed interval $[a, b]$. -Then - $$\int_{ka}^{kb} s \left( \frac{x}{k} \right) \mathop{dx} = - k \int_a^b s(x) \mathop{dx} \quad\text{for every } k \neq 0.$$ +\begin{theorem}{1.8} + + Let $s$ be a step function on closed interval $[a, b]$. + Then + $$\int_{ka}^{kb} s \left( \frac{x}{k} \right) \mathop{dx} = + k \int_a^b s(x) \mathop{dx} \quad\text{for every } k \neq 0.$$ + +\end{theorem} \begin{proof} @@ -2511,24 +2605,28 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \end{proof} -\chapter{Upper and Lower Integrals}% -\label{chap:upper-lower-integrals} +\chapter{Theorey of Integrability}% +\label{chap:theory-integrability} \section{\partial{Theorem 1.9}}% \label{sec:theorem-1.9} -Every function $f$ which is bounded on $[a, b]$ has a lower integral - $\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the - inequalities - \begin{equation} - \label{sec:theorem-1.9-eq1} - \int_a^b s(x) \mathop{dx} \leq \ubar{I}(f) \leq - \bar{I}(f) \leq \int_a^b t(x) \mathop{dx} - \end{equation} - for all \nameref{sec:def-step-function}s $s$ and $t$ with $s \leq f \leq t$. -The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if - its upper and lower integrals are equal, in which case we have - $$\int_a^b f(x) \mathop{dx} = \ubar{I}(f) = \bar{I}(f).$$ +\begin{theorem}{1.9} + + Every function $f$ which is bounded on $[a, b]$ has a lower integral + $\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the + inequalities + \begin{equation} + \label{sec:theorem-1.9-eq1} + \int_a^b s(x) \mathop{dx} \leq \ubar{I}(f) \leq + \bar{I}(f) \leq \int_a^b t(x) \mathop{dx} + \end{equation} + for all \nameref{sec:def-step-function}s $s$ and $t$ with $s \leq f \leq t$. + The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if + its upper and lower integrals are equal, in which case we have + $$\int_a^b f(x) \mathop{dx} = \ubar{I}(f) = \bar{I}(f).$$ + +\end{theorem} \begin{proof} @@ -2556,9 +2654,9 @@ The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if Therefore \nameref{sec:theorem-i.34} tells us $S$ has a \nameref{sec:def-supremum}, $T$ has an \nameref{sec:def-infimum}, and $\sup{S} \leq \inf{T}$. - By definition of the \nameref{sec:def-lower-integral-f}, + By definition of the \nameref{sec:def-lower-integral}, $\ubar{I}(f) = \sup{S}$. - By definition of the \nameref{sec:def-upper-integral-f}, + By definition of the \nameref{sec:def-upper-integral}, $\bar{I}(f) = \inf{S}$. Thus \eqref{sec:theorem-1.9-eq1} holds. @@ -2575,16 +2673,18 @@ The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if \end{proof} -\chapter{The Area of an Ordinate Set Expressed as an Interval}% -\label{chap:area-ordinate-set-expressed-interval} - -\section{\partial{Theorem 1.10}}% +\section{\partial{Measurability of Ordinate Sets}}% +\label{sec:measurability-ordinate-sets} \label{sec:theorem-1.10} -Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval - $[a, b]$, and let $Q$ denote the ordinate set of $f$ over $[a, b]$. -Then $Q$ is measurable and its area is equal to the integral - $\int_a^b f(x) \mathop{dx}$. +\begin{theorem}{1.10} + + Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval + $[a, b]$, and let $Q$ denote the ordinate set of $f$ over $[a, b]$. + Then $Q$ is measurable and its area is equal to the integral + $\int_a^b f(x) \mathop{dx}$. + +\end{theorem} \begin{proof} @@ -2601,16 +2701,21 @@ Then $Q$ is measurable and its area is equal to the integral \end{proof} -\section{\partial{Theorem 1.11}}% +\section{\partial{Measurability of the Graph of a Nonnegative Function}}% +\label{sec:measurability-graph-nonnegative-function} \label{sec:theorem-1.11} -Let $f$ be a nonnegative function, integrable on an interval $[a, b]$. -Then the graph of $f$, that is, the set - \begin{equation} - \label{sec:theorem-1.11-eq1} - \{(x, y) | a \leq x \leq b, y = f(x)\}, - \end{equation} - is measurable and has area equal to $0$. +\begin{theorem}{1.11} + + Let $f$ be a nonnegative function, integrable on an interval $[a, b]$. + Then the graph of $f$, that is, the set + \begin{equation} + \label{sec:measurability-graph-nonnegative-function-eq1} + \{(x, y) \mid a \leq x \leq b, y = f(x)\}, + \end{equation} + is measurable and has area equal to $0$. + +\end{theorem} \begin{proof} @@ -2621,7 +2726,7 @@ Then the graph of $f$, that is, the set equal to $0$. \paragraph{(i)}% - \label{par:theorem-1.11-i} + \label{par:measurability-graph-nonnegative-function-i} By definition of integrability, there exists one and only one number $I$ such that @@ -2637,11 +2742,12 @@ Then the graph of $f$, that is, the set \paragraph{(ii)}% Let $Q$ denote the ordinate set of $f$. - By \nameref{sec:theorem-1.11}, $Q$ is measurable with area equal to the - integral $I = \int_a^b f(x) \mathop{dx}$. - By \nameref{par:theorem-1.11-i}, $Q'$ is measurable with area also equal to - $I$. - We note the graph of $f$, \eqref{sec:theorem-1.11-eq1}, is equal to set + By \nameref{sec:measurability-ordinate-sets}, $Q$ is measurable with area + equal to the integral $I = \int_a^b f(x) \mathop{dx}$. + By \nameref{par:measurability-graph-nonnegative-function-i}, $Q'$ is + measurable with area also equal to $I$. + We note the graph of $f$, + \eqref{sec:measurability-graph-nonnegative-function-eq1}, is equal to set $Q - Q'$. By the \nameref{sec:area-difference-property}, $Q - Q'$ is measurable and $$a(Q - Q') = a(Q) - a(Q') = I - I = 0.$$ @@ -2649,4 +2755,134 @@ Then the graph of $f$, that is, the set \end{proof} +\section + [\partial{Integrability of Bounded Monotonic Functions}] + {\partial{Integrability of Bounded Monotonic \texorpdfstring{\\}{}Functions}} +\label{sec:integrability-bounded-monotonic-functions} +\label{sec:theorem-1.12} + +\begin{theorem}{1.12} + + If $f$ is \nameref{sec:def-monotonic} on a closed interval $[a, b]$, then $f$ + is \nameref{sec:def-integrable} on $[a, b]$. + +\end{theorem} + +\begin{proof} + + Let $f$ be a monotonic function on closed interval $[a, b]$. + That is to say, either $f$ is increasing on $[a, b]$ or $f$ is decreasing on + $[a, b]$. + Because $f$ is on a closed interval, it is bounded. + By \nameref{sec:theorem-1.9}, $f$ has a \nameref{sec:def-lower-integral} + $\ubar{I}(f)$, $f$ has an \nameref{sec:def-upper-integral} $\bar{I}(f)$, + and $f$ is integrable if and only if $\ubar{I}(f) = \bar{I}(f)$. + + Consider a partition $P = \{x_0, x_1, \ldots, x_n\}$ of $[a, b]$ in which + $x_k - x_{k-1} = (b - a) / n$ for each $k = 1, \ldots, n$. + There are two cases to consider: + + \paragraph{Case 1}% + + Suppose $f$ is increasing. + Let $s$ be the step function below $f$ with constant value $f(x_{k-1})$ + on every $k$th open subinterval of $P$. + Let $t$ be the step function above $f$ with constant value $f(x_k)$ + on every $k$th open subinterval of $P$. + Then, by \eqref{sec:theorem-1.9-eq1}, it follows + \begin{equation} + \label{sec:integrability-bounded-monotonic-functions-eq1} + \int_a^b s(x) \mathop{dx} \leq \ubar{I}(f) + \leq \bar{I}(f) \leq \int_a^b t(x) \mathop{dx}. + \end{equation} + By definition of the \nameref{sec:def-integral-step-function}, + \begin{align*} + \int_a^b s(x) \mathop{dx} + & = \sum_{k=1}^n f(x_{k-1})\left[\frac{b - a}{n}\right] \\ + \int_a^b t(x) \mathop{dx} + & = \sum_{k=1}^n f(x_k)\left[\frac{b - a}{n}\right]. + \end{align*} + Thus + \begin{align*} + \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx} + & = \sum_{k=1}^n f(x_k)\left[\frac{b - a}{n}\right] - + \sum_{k=1}^n f(x_{k-1})\left[\frac{b - a}{n}\right] \\ + & = \left[\frac{b - a}{n}\right] \sum_{k=1}^n f(x_k) - f(x_{k-1}) \\ + & = \frac{(b - a)(f(b) - f(a))}{n}. + \end{align*} + By \eqref{sec:integrability-bounded-monotonic-functions-eq1}, + \begin{align*} + \ubar{I}(f) + & \leq \bar{I}(f) \\ + & \leq \int_a^b t(x) \mathop{dx} \\ + & = \int_a^b s(x) \mathop{dx} + \frac{(b - a)(f(b) - f(a))}{n} \\ + & \leq \ubar{I}(f) + \frac{(b - a)(f(b) - f(a))}{n}. + \end{align*} + Since the above holds for all positive integers $n$, + \nameref{sec:theorem-i.31} indicates $\ubar{I}(f) = \bar{I}(f)$. + + \paragraph{Case 2}% + + Suppose $f$ is decreasing. + Let $s$ be the step function below $f$ with constant value $f(x_k)$ + on every $k$th open subinterval of $P$. + Let $t$ be the step function above $f$ with constant value $f(x_{k-1})$ + on every $k$th open subinterval of $P$. + Then, by \eqref{sec:theorem-1.9-eq1}, it follows + \begin{equation} + \label{sec:integrability-bounded-monotonic-functions-eq2} + \int_a^b s(x) \mathop{dx} \leq \ubar{I}(f) + \leq \bar{I}(f) \leq \int_a^b t(x) \mathop{dx}. + \end{equation} + By definition of the \nameref{sec:def-integral-step-function}, + \begin{align*} + \int_a^b s(x) \mathop{dx} + & = \sum_{k=1}^n f(x_k)\left[\frac{b - a}{n}\right] \\ + \int_a^b t(x) \mathop{dx} + & = \sum_{k=1}^n f(x_{k-1})\left[\frac{b - a}{n}\right]. + \end{align*} + Thus + \begin{align*} + \int_a^b t(x) \mathop{dx} - \int_a^b s(x) \mathop{dx} + & = \sum_{k=1}^n f(x_{k-1})\left[\frac{b - a}{n}\right] - + \sum_{k=1}^n f(x_k)\left[\frac{b - a}{n}\right] \\ + & = \left[\frac{b - a}{n}\right] \sum_{k=1}^n f(x_{k-1}) - f(x_k) \\ + & = \frac{(b - a)(f(a) - f(b))}{n}. + \end{align*} + By \eqref{sec:integrability-bounded-monotonic-functions-eq2}, + \begin{align*} + \ubar{I}(f) + & \leq \bar{I}(f) \\ + & \leq \int_a^b t(x) \mathop{dx} \\ + & = \int_a^b s(x) \mathop{dx} + \frac{(b - a)(f(a) - f(b))}{n} \\ + & \leq \ubar{I}(f) + \frac{(b - a)(f(a) - f(b))}{n}. + \end{align*} + Since the above holds for all positive integers $n$, + \nameref{sec:theorem-i.31} indicates $\ubar{I}(f) = \bar{I}(f)$. + +\end{proof} + +\section{\unverified{% + Calculation of the Integral of a Bounded Monotonic Function}}% +\label{sec:calculation-integral-bounded-monotonic-function} +\label{sec:theorem-1.13} + +\begin{theorem}{1.13} + + Assume $f$ is increasing on a closed interval $[a, b]$. + Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$. + If $I$ is any number which satisfies the inequalities + $$\frac{b - a}{n} \sum_{k=0}^{n-1} f(x_k) + \leq I \leq + \frac{b - a}{n} \sum_{k=1}^n f(x_k)$$ + for every integer $n \geq 1$, then $I = \int_a^b f(x) \mathop{dx}$. + +\end{theorem} + +\begin{proof} + + TODO + +\end{proof} + \end{document} diff --git a/preamble.tex b/preamble.tex index 287de70..747a4be 100644 --- a/preamble.tex +++ b/preamble.tex @@ -26,13 +26,7 @@ \newcommand{\divider}{\vspace{10pt}\hrule\vspace{10pt}} \newcommand{\header}[2]{\title{#1}\author{#2}\date{}\maketitle} -\newenvironment{axiom}{% - \paragraph{\normalfont\normalsize\textit{Axiom.}}} - {\hfill$\square$} -\newenvironment{definition}{% - \paragraph{\normalfont\normalsize\textit{Definition.}}} - {\hfill$\square$} - +% Admonitions. \newcommand{\admonition}[2]{% \begin{center} \doublebox{ @@ -45,6 +39,25 @@ \newcommand{\note}[1]{\admonition{Note:}{#1}} \newcommand{\todo}[1]{\admonition{TODO:}{#1}} +% Statements. +\newenvironment{axiom}{% + \paragraph{\normalfont\normalsize\textit{Axiom.}}} + {\hfill$\square$} +\newenvironment{definition}{% + \paragraph{\normalfont\normalsize\textit{Definition.}}} + {\hfill$\square$} + +\newtheorem{lemmainner}{Lemma} +\newenvironment{lemma}[1]{% + \renewcommand\thelemmainner{#1}% + \lemmainner +}{\endlemmainner} +\newtheorem{theoreminner}{Theorem} +\newenvironment{theorem}[1]{% + \renewcommand\thetheoreminner{#1}% + \theoreminner +}{\endtheoreminner} + % ======================================== % Status % ========================================