Enderton. Exercise 3.29.
parent
04fe6c66db
commit
c574b481af
|
@ -44,7 +44,7 @@ For any set $I$ and any function $H$ with domain $I$, if $H(i) \neq \emptyset$
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
\section{\pending{Cartesian Product}}%
|
\section{\defined{Cartesian Product}}%
|
||||||
\label{ref:cartesian-product}
|
\label{ref:cartesian-product}
|
||||||
|
|
||||||
Let $I$ be a set and let $H$ be a \nameref{ref:function} whose domain includes $I$.
|
Let $I$ be a set and let $H$ be a \nameref{ref:function} whose domain includes $I$.
|
||||||
|
@ -54,6 +54,12 @@ We define the \textbf{cartesian product} of the $H(i)$'s as
|
||||||
f \text{ is a function with domain } I \text{ and }
|
f \text{ is a function with domain } I \text{ and }
|
||||||
(\forall i \in I) f(i) \in H(i)\}.$$
|
(\forall i \in I) f(i) \in H(i)\}.$$
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Data/Set/Prod}{Set.prod}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\section{\defined{Compatible}}%
|
\section{\defined{Compatible}}%
|
||||||
\label{ref:compatible}
|
\label{ref:compatible}
|
||||||
|
|
||||||
|
@ -2974,12 +2980,11 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||||
All that remains is to prove $F$ is single-rooted.
|
All that remains is to prove $F$ is single-rooted.
|
||||||
Let $y \in \ran{F}$.
|
Let $y \in \ran{F}$.
|
||||||
By definition of the \nameref{ref:range} of a function, there exists some
|
By definition of the \nameref{ref:range} of a function, there exists some
|
||||||
$x$ such that $\left< x, y \right> \in F$.
|
$x_1$ such that $\left< x_1, y \right> \in F$.
|
||||||
Suppose $x_1, x_2 \in \dom{F}$ such that
|
Suppose there exists a set $x_2$ such that $\left< x_2, y \right> \in F$.
|
||||||
$\left< x_1, y \right>, \left< x_2, y \right> \in F$.
|
By hypothesis, $G(F(x_1)) = G(F(x_2))$ implies $I_A(x_1) = I_A(x_2)$.
|
||||||
Then $F(x_1) = F(x_2) = y$.
|
|
||||||
Then $G(F(x_1)) = G(F(x_2))$ implies $I_A(x_1) = I_A(x_2)$.
|
|
||||||
Thus $x_1 = x_2$.
|
Thus $x_1 = x_2$.
|
||||||
|
Therefore $F$ must be single-rooted.
|
||||||
|
|
||||||
\subparagraph{($\Leftarrow$)}%
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
|
@ -4663,7 +4668,7 @@ Show that $G$ maps $\powerset{A}$ one-to-one into $\powerset{B}$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\pending{Exercise 3.29}}%
|
\subsection{\verified{Exercise 3.29}}%
|
||||||
\label{sub:exercise-3.29}
|
\label{sub:exercise-3.29}
|
||||||
|
|
||||||
Assume that $f \colon A \rightarrow B$ and define a function
|
Assume that $f \colon A \rightarrow B$ and define a function
|
||||||
|
@ -4677,6 +4682,9 @@ Does the converse hold?
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
|
\lean{Bookshelf/Enderton/Set/Relation}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_29}
|
||||||
|
|
||||||
Let $f \colon A \rightarrow B$ such that $f$ maps $A$ onto $B$.
|
Let $f \colon A \rightarrow B$ such that $f$ maps $A$ onto $B$.
|
||||||
Define $G \colon B \rightarrow \powerset{A}$ by
|
Define $G \colon B \rightarrow \powerset{A}$ by
|
||||||
\eqref{sub:exercise-3.29-eq1}.
|
\eqref{sub:exercise-3.29-eq1}.
|
||||||
|
@ -4693,7 +4701,7 @@ Does the converse hold?
|
||||||
G(x_2) & = \{x \in A \mid f(x) = x_2\}.
|
G(x_2) & = \{x \in A \mid f(x) = x_2\}.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
Since $f$ maps $A$ onto $B$, $\ran{f} = B$.
|
Since $f$ maps $A$ onto $B$, $\ran{f} = B$.
|
||||||
Thus $x_2, x_2 \in \ran{f}$.
|
Thus $x_1, x_2 \in \ran{f}$.
|
||||||
By definition of the \nameref{ref:range} of a set, there exist some $t \in A$
|
By definition of the \nameref{ref:range} of a set, there exist some $t \in A$
|
||||||
such that $f(t) = x_1$.
|
such that $f(t) = x_1$.
|
||||||
Therefore $t \in G(x_1)$.
|
Therefore $t \in G(x_1)$.
|
||||||
|
|
|
@ -508,19 +508,19 @@ Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
||||||
**iff** `F` is one-to-one.
|
**iff** `F` is one-to-one.
|
||||||
-/
|
-/
|
||||||
theorem theorem_3j_a {F : Set.HRelation α β} {A : Set α} {B : Set β}
|
theorem theorem_3j_a {F : Set.HRelation α β} {A : Set α} {B : Set β}
|
||||||
(hF : isSingleValued F ∧ mapsInto F A B) (hA : Set.Nonempty A)
|
(hF : mapsInto F A B) (hA : Set.Nonempty A)
|
||||||
: (∃ G : Set.HRelation β α,
|
: (∃ G : Set.HRelation β α,
|
||||||
isSingleValued G ∧ mapsInto G B A ∧
|
isSingleValued G ∧ mapsInto G B A ∧
|
||||||
(∀ p ∈ comp G F, p.1 = p.2)) ↔ isOneToOne F := by
|
(comp G F = { p | p.1 ∈ A ∧ p.1 = p.2 })) ↔ isOneToOne F := by
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
· intro ⟨G, ⟨hG₁, hG₂, hI⟩⟩
|
· intro ⟨G, hG⟩
|
||||||
refine ⟨hF.left, ?_⟩
|
refine ⟨hF.left, ?_⟩
|
||||||
show isSingleRooted F
|
|
||||||
intro y hy
|
intro y hy
|
||||||
have ⟨x, hx⟩ := ran_exists hy
|
have ⟨x₁, hx₁⟩ := ran_exists hy
|
||||||
sorry
|
refine ⟨x₁, ⟨mem_pair_imp_fst_mem_dom hx₁, hx₁⟩, ?_⟩
|
||||||
· intro h
|
intro x₂ hx₂
|
||||||
sorry
|
sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
/-- #### Theorem 3J (b)
|
/-- #### Theorem 3J (b)
|
||||||
|
|
||||||
|
@ -529,10 +529,10 @@ Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
||||||
`B` **iff** `F` maps `A` onto `B`.
|
`B` **iff** `F` maps `A` onto `B`.
|
||||||
-/
|
-/
|
||||||
theorem theorem_3j_b {F : Set.HRelation α β} {A : Set α} {B : Set β}
|
theorem theorem_3j_b {F : Set.HRelation α β} {A : Set α} {B : Set β}
|
||||||
(hF : isSingleValued F ∧ mapsInto F A B) (hA : Set.Nonempty A)
|
(hF : mapsInto F A B) (hA : Set.Nonempty A)
|
||||||
: (∃ H : Set.HRelation β α,
|
: (∃ H : Set.HRelation β α,
|
||||||
isSingleValued H ∧ mapsInto H B A ∧
|
isSingleValued H ∧ mapsInto H B A ∧
|
||||||
(∀ p ∈ comp F H, p.1 = p.2)) ↔ mapsOnto F A B := by
|
(comp F H = { p | p.1 ∈ B ∧ p.1 = p.2 })) ↔ mapsOnto F A B := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
/-- #### Theorem 3K (a)
|
/-- #### Theorem 3K (a)
|
||||||
|
@ -1642,6 +1642,51 @@ theorem exercise_3_28 {A : Set α} {B : Set β}
|
||||||
have hz := mem_pair_imp_snd_mem_ran hb.right
|
have hz := mem_pair_imp_snd_mem_ran hb.right
|
||||||
exact hf.right.right.right hz
|
exact hf.right.right.right hz
|
||||||
|
|
||||||
|
/-- #### Exercise 3.29
|
||||||
|
|
||||||
|
Assume that `f : A → B` and define a function `G : B → 𝒫 A` by
|
||||||
|
```
|
||||||
|
G(b) = {x ∈ A | f(x) = b}
|
||||||
|
```
|
||||||
|
Show that if `f` maps `A` *onto* `B`, then `G` is one-to-one. Does the converse
|
||||||
|
hold?
|
||||||
|
-/
|
||||||
|
theorem exercise_3_29 {f : Set.HRelation α β} {G : Set.HRelation β (Set α)}
|
||||||
|
{A : Set α} {B : Set β} (hf : mapsOnto f A B)
|
||||||
|
(hG : mapsInto G B (𝒫 A) ∧ G = { p | p.1 ∈ B ∧ p.2 = {x ∈ A | (x, p.1) ∈ f} })
|
||||||
|
: isOneToOne G := by
|
||||||
|
unfold isOneToOne
|
||||||
|
refine ⟨hG.left.left, ?_⟩
|
||||||
|
intro y hy
|
||||||
|
have ⟨x₁, hx₁⟩ := ran_exists hy
|
||||||
|
refine ⟨x₁, ⟨mem_pair_imp_fst_mem_dom hx₁, hx₁⟩, ?_⟩
|
||||||
|
intro x₂ hx₂
|
||||||
|
|
||||||
|
have hG₁ : (x₁, {x ∈ A | (x, x₁) ∈ f}) ∈ G := by
|
||||||
|
rw [hG.right, ← hG.left.right.left]
|
||||||
|
simp only [Set.mem_setOf_eq, and_true]
|
||||||
|
exact mem_pair_imp_fst_mem_dom hx₁
|
||||||
|
have hG₂ : (x₂, {x ∈ A | (x, x₂) ∈ f}) ∈ G := by
|
||||||
|
rw [hG.right, ← hG.left.right.left]
|
||||||
|
simp only [Set.mem_setOf_eq, and_true]
|
||||||
|
exact hx₂.left
|
||||||
|
have heq : {x ∈ A | (x, x₁) ∈ f} = {x ∈ A | (x, x₂) ∈ f} := by
|
||||||
|
have h₁ := single_valued_eq_unique hG.left.left hx₁ hG₁
|
||||||
|
have h₂ := single_valued_eq_unique hG.left.left hx₂.right hG₂
|
||||||
|
rw [← h₁, ← h₂]
|
||||||
|
|
||||||
|
rw [hG.right, ← hf.right.right] at hG₁ hG₂
|
||||||
|
simp only [Set.mem_setOf_eq, and_true] at hG₁ hG₂
|
||||||
|
have ⟨t, ht⟩ := ran_exists hG₁
|
||||||
|
have : t ∈ {x ∈ A | (x, x₁) ∈ f} := by
|
||||||
|
simp only [Set.mem_setOf_eq]
|
||||||
|
refine ⟨?_, ht⟩
|
||||||
|
rw [← hf.right.left]
|
||||||
|
exact mem_pair_imp_fst_mem_dom ht
|
||||||
|
rw [heq] at this
|
||||||
|
simp only [Set.mem_setOf_eq] at this
|
||||||
|
exact single_valued_eq_unique hf.left this.right ht
|
||||||
|
|
||||||
end Relation
|
end Relation
|
||||||
|
|
||||||
end Enderton.Set.Chapter_3
|
end Enderton.Set.Chapter_3
|
Loading…
Reference in New Issue